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Abstract

This thesis discusses a novel concept called Multidimensional Cloud network la-

tency monitoring and applications of collected measurements.

Network latency has a direct impact on overall service performance, and, conse-

quently, on the end–user experience. Unfortunately, latency is generally difficult to model,

predict or control. Despite that, we show that a lot of information about Cloud service

latency can be derived via thoughtfully designed active probing and, in turn, provide a

foundation for improving various aspects of Cloud service performance.

We initially propose a novel distributed monitoring methodology, based on mea-

suring Cloud service at multiple dimensions it is composed of. This approach is cost

effective, has the global reach, does not perturb the service and provides dependable mea-

surements. We then offer a lightweight planet–scale implementation that serves as our

data collection platform and confirms the feasibility of our approach.

Later on, we leverage measurements, collected across two major public Cloud

service providers, to improve Cloud services via three data–driven applications. Firstly, we

use a set of descriptive–statistic methods and timeseries analyses to evaluate Cloud service,

revealing both the known and unknown anomalous behaviors, as well as various insights

and evolutionary trends. Secondly, we utilize preprocessed measurements for performance

modeling of Cloud services, which, through a subsequent benchmarking process, are shown

to exhibit certain unexpected and undesired spatio–temporal performance variations at

different infrastructure levels and scales. Lastly, we show how these performance variations

can be exploited by an informed gateway middleware to minimize adverse network effects

and avoid many issues on the Cloud end.

Applicability of the multidimensional monitoring is confirmed by, but not limited

to the presented application areas. Nascent service models, computing paradigms and

socio–economic trends present tremendous monitoring opportunities in the future.

Index terms: Cloud; Latency; Monitoring; Profiling; Benchmarking; Optimization
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Abstrakt

Předmětem této disertačńı práce je nový koncept Vı́cerozměrného monitorováńı

śıt’ové latence Cloud Computingu a aplikace naměřených dat.

Śıt’ová latence má př́ımý dopad jak na výkonnost služeb, tak i na následnou

uživatelskou zkušenost. Obecně však neńı jednoduché śıt’ovou latenci modelovat, predi-

kovat ani kontrolovat. Přesto v této práci ukazujeme, že pečlivě navržené aktivńı měřeńı

latence poskytuje detailńı vhled do výkonnosti Cloudových služeb a t́ım stav́ı základy pro

zlepšováńı r̊uzných jejich aspekt̊u.

V této práci nejprve navrhujeme novou metodologii distribuovaného monitorováńı

latence, založené na současném měřeńı dimenźı, ze kterých se Cloudová služba skládá.

Takový př́ıstup je cenově dostupný, má globálńı rozsah, nenarušuje službu a poskytuje

spolehlivá data. Vhodnost metodologie následně potvrzujeme návrhem a implementaćı

metody sběru dat, založené na globálńı měř́ıćı platformě.

V práci dále pomoćı vytvořených technik dlouhodobě monitorujeme dva hlavńı

Cloudové poskytovatele a naměřená data využ́ıváme ke zlepšeńı služeb pomoćı třech

nových, na datech o latenci založených, aplikaćı. Nejprve využ́ıváme metod popisné sta-

tistiky a analýzy časových řad ke zhodnoceńı Cloudových služeb, odkrýváńı známých

i neznámých anomálíı, vhled̊u do chováńı služeb a jejich vývojových trend̊u. Následně

využ́ıváme předzpracovaná data k modelováńı výkonnosti Cloudových služeb a jejich

benchmarkingu, odhaluj́ıćım neočekávané nežádoućı rozd́ıly ve výkonnosti na r̊uzných

vrstvách a granularitách infrastruktury. Na závěr ukazujeme, jak lze rozd́ıly ve výkonnosti

služeb využ́ıt chytrou domáćı branou k minimalizaci negativńıch śıt’ových vliv̊u a vyhnut́ı

se velkému množstv́ı problémů na straně poskytovatele Cloudových služeb.

Využitelnost v́ıcerozměrného monitorováńı je uvedenými aplikačńımi oblastmi

potvrzena, nikoliv však omezena. Vznikaj́ıćı modely služeb, výpočetńı paradigmata a so-

cioekonomické trendy nab́ıźı velkou využitelnost monitorováńı i v budoucnosti.

Kĺıčová slova: Cloud; Latence; Monitorováńı; Profilováńı; Benchmarking; Optimalizace
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Chapter 1

Introduction

1.1 Cloud Latency Monitoring

Time is among human’s most valuable resources. With our lives becoming in-

creasingly more digital, much of a lifetime is spent waiting for issued digital tasks (appli-

cation launch, call routing, search queries, transaction processing, authentication, tactile

control etc.) to complete. At the heart of these tasks are compute, network and storage

operations – each taking certain time to finish. That time is what we call latency.

Network plays a vital role every time when a non–local operation takes place.

Network–incurred latency includes signal propagation, middlebox processing, routing,

switching, policing and various other decision–making to ensure a communication that

respects interests of all involved parties. Under an increasingly popular Cloud Comput-

ing service model, controlling latency is difficult because of traits such as virtualization,

offload, multitenancy and complex distributed service architectures. A certain portion of

human lifetime is thus left at a mercy of a technology that is controlled and predictable

to only some respect. We aim to better understand and decrease amount of time people

and machines lose when using networked systems.

The first problem we address is how to rigorously monitor network latency

under the Cloud Computing service model. The second problem we address is how

to leverage these measurements to improve Cloud services. Therefore, the work

in this thesis concentrates on a Cloud Computing latency monitoring and applications of

measurements thereof – all for the benefit of user experience and time saving.

The key contributions of this work are a suitable methodology of Cloud Computing

latency monitoring and three data–driven methodologies for improved network profiling,

benchmarking and connectivity to Cloud services.

1



Chapter 1. Introduction

There is no single metric that captures latency well. An ideal latency monitoring

output would describe complete distributions of latencies at every place of Cloud Comput-

ing networks. There is, however, no feasible way of obtaining that. Hence, our goal is to

strike the right balance between deployment cost, measurement reach, sampling frequency

and data dependability. There are many direct and secondary advantages of deploying

such a global distributed latency monitoring solution:

• Holistic unbiased view of end–to–end Cloud performance from a 3rd–party viewpoint;

• Sensing platform that reveals coincidences and attributes failures and various other

events at local, regional or global scopes;

• Manual detection and training data for automized detection of Cloud events (issues,

improvements, trends etc.) together with their origin;

• Decision support for infrastructure changes, application migration or outsourcing;

• Evidence for Service–Level Agreement (SLA) accountability;

• Finding the frequently–used network segments and tuning system parameters to

optimize performance;

• Measuring resource utilization and finding performance bottlenecks;

• Characterizing workload for capacity planning and for creating test workloads;

• Finding model parameters to validate models and to develop inputs for models.

The gists of our three respective applications, built on top of the monitoring, are as follows:

Cloud network profiling application is based on descriptive–statistic metrics that

manually profile latency timeseries and spatio–temporarily look for coincidences of events

therein across protocol layers of the network communication stack, vantage point locations

and Cloud resources.

Longitudinal Cloud benchmarking application is based on data transformations

and a notion of distance in n–dimensional vector spaces that characterize performance of

Cloud resources being compared.
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1.2. Outline

Cloud connectivity optimization application is based on Convex Optimization,

specifically binary Mixed–Integer Linear Program (MILP) striving to minimize adverse

network effects on network traffic.

We demonstrate applicability of the three applications using case studies of actual

ground–truth latency data of the major Cloud service providers – Microsoft Azure and

Amazon Web Services (AWS).

We used to provide near–realtime data and still provide archived data in a form

of open datasets on the project website http://claudit.feld.cvut.cz

1.2 Outline

In Chapter 2, we present essential background knowledge of network latency and,

specifically, Cloud Computing network latency.

In Chapter 3, we review the Cloud monitoring state–of–the–art, as well as state–

of–the–art of its discussed application areas – Cloud network profiling, Cloud service

benchmarking and Cloud connectivity optimization.

In Chapter 4, we describe in detail the key underlying innovation – the Multidi-

mensional Cloud latency monitoring methodology, together with its properties. We also

present a performance evaluation, yielding suitable values for monitoring parameters.

In Chapter 5, we devise a platform for multidimensional–measurements capturing

and present its implementation and deployment at the global scale.

In Chapter 6, we present and evaluate performance of the three novel applications

of the collected multidimensional Cloud latency measurements for Cloud service improve-

ments – a methodology for revealing Cloud service insights and profiling Cloud network

behavior, a Cloud service benchmarking methodology and a Cloud–connectivity optimiza-

tion methodology.

Finally, in Chapter 7, we give concluding remarks on the future applicability of

the methodology and mention related open issues.
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Chapter 1. Introduction

1.3 Contributions

• A new methodology of Cloud network latency monitoring is presented. It is based on

continuous large–scale active probing of multiple Cloud resources at multiple network

protocol layers from a global network or Internet vantage points. It is lightweight,

easy–to–deploy, dependable and stores little information;

• A method for multidimensional measurements capture was devised and implemented

using PlanetLab and basic–tier public Cloud provider resources;

• Actual real–world measurements were continuously collected using Cloud monitoring

platform, visualized in a near–realtime, archived online and are still provided in the

form of a publicly available dataset;

• A mutidimensional–measurement timeseries analyses are presented, together with

the revealed insights, anomalous behaviors and performance trends of Cloud services;

• A new longitudinal methodology for latency–based Cloud service benchmarking is

presented that accurately reflects application requirements by leveraging prepro-

cessed multidimensional measurements;

• A new MILP–based methodology for Cloud connectivity optimization is presented.

It minimizes cumulative adverse network effects on Cloud–bound traffic and avoids

problematic destinations by using informed–gateway decisions. A näıve implemen-

tation using router application plane is offered;

• A performance evaluation of the multidimensional latency monitoring is carried out,

as well as performance evaluations of the respective methodologies of the data–driven

applications;

• Large–scale evaluation of Cloud service latency of two major Cloud service providers,

Microsoft Azure and Amazon AWS, is carried out through case studies that use afore-

mentioned methods. The results reveal notable hidden trends, events, infrastructure

changes, performance differences and optimization potential at granularities of Cloud

service providers, datacenters and resources;

• Prototypes of all methods were implemented in MATLAB or Python.
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Chapter 2

Latency Background

In this Chapter, we present essential background knowledge and properties of

communication network latency. State–of–the–art techniques that tackle latency–related

problems are also presented. We then describe how the complex Cloud Computing archi-

tectures change the behavior of network latency and how research industries and academia

react by adjusting latency research works.

2.1 Network Latency

Computer networks necessarily constrain throughput, introduce latencies be-

tween end systems and can actually lose packets [76, 102]. Network latencies a packet

suffers from in intermediate nodes include processing, queuing, transmission and prop-

agation latency. Latencies a packet suffers from in end–systems include packetization,

response composing and shared–media latencies. End–to–end latency is then a sum of all

these blocking latencies along the entire communication path. Figure 2.1 depicts the first

category – the nodal latencies, which are most commonly modeled as the Sum 2.1.

q + v(t) (2.1)

The sum has two components, q is a constant, and v(t) is a random process with

a long–tailed, usually unknown distribution (e.g., Exponential or Gamma). The latency

of each packet is typically assumed to be independent and identically distributed (i.i.d.).

Previous work has shown that latency values are not truly i.i.d. for two main reasons.

First, the bursty behavior of network latency [42], and second, network latencies have a
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Chapter 2. Latency Background

Figure 2.1: Nodal latencies at router [76].

periodic behavior [98] that is affected by the time–of–day effects, corresponding to the

behavior of human end–users [97].

A time interval between issuing a request and receiving a response back is called

a response time. In the case when both the request and the response are composed of

a single packet, response time often becomes similar to end–to–end latency and a single

round trip takes place. It is important to draw a distinction between service time and

response time, as the latter grows when arrival rate is higher than service rate. Figure 2.2

shows how a system response time changes with an increasing load or decreasing resource

availability (e.g., running out of queue capacities, overloading nodal CPUs or congesting

shared medium).

Inevitably, latency occasionally gets out of reasonable bounds – a phenomenon

called tail latency. An extent to which it is allowed to do so is captured by Service–Level

Agreements (SLAs), which, among others, prescribe maximum RTT values to latency

percentiles. Although a single occurrence of tail latency is by definition rare, its encounter

with end user is not. For example, a dynamic nature of WWW implies webpages that

are composed of many resources, often non–local (Table 2.1). The third column shows

a likelihood of one access experiencing the 99th percentile. A typical web user’s session

involves five page loads, averaging 40 resources per page, which means just 0.003% users

will not experience something worse than 95th percentile. 18% of users are going to

experience response time worse than 99.9th percentile, less than 5% response time worse

than 99.97th percentile and less than 1% response time worse than 99.995th percentile.

Thus, tail latency is what most web user will see.
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2.1. Network Latency

Figure 2.2: Response time spectrum. Effect of response time in the face of increasing load,
going beyond the system’s operating range [9]

Table 2.1: Fraction of web users experiencing 99–th latency percentile or worse [116].

Website # of subordinate Page loads experiencing
requests 99%’ile or worse

amazon.com 190 85.2%
kohls.com 204 87.1%
jcrew.com 112 67.6%

saksfifthavenue.com 109 66.5%
nytimes.com 173 82.4%

cnn.com 279 93.9%
twitter.com 87 58.3%

pinterest.com 84 57%
facebook.com 178 83.3%
google.com 31 26.7%

google.com/search?q=latency 76 53.4%
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Chapter 2. Latency Background

Most SLA monitoring systems stop at the 99th percentile, for practical reasons.

The data collected by most monitoring systems is usually summarized in small, 5 to 10

second windows. Thus, measurement fidelity is lost, as deriving five nines for a minute or

hour from a set of small samples of percentiles is not possible. A quick feasible practical

approach to latency evaluation is to define SLAs and plot their requirements. Then, differ-

ent production–application scenarios using different configurations and different workloads

should be run. The results indicate whether SLAs are met, or how many machines need

to be provisioned to do so (Figure 2.3). For CSPs, SLAs are important for estimating

insurance costs.

Many tools exist for storing latency, such as HDRHistogram [18]. This particular

tool supports recording and analyzing sampled data value counts across a configurable

integer value range, with configurable value precision within the range. Value precision is

expressed as the number of significant digits in the value record, and provides control over

value quantization behavior across the value range and the subsequent value resolution

at any given level. Distribution can be reported using percentiles, linear or logarithmic

value buckets, or mean and standard deviation. HDRHistogram can handle high–volume

production data (Figure 2.3).

Figure 2.3: SLA versus actual response time captured by HDRHistogram tool [18].
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2.1. Network Latency
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Figure 2.4: Diagnosing web browsing issues using latencies [59].

Latency does have many other uses, such as reasoning about issues and failures of

web browsing. Fine–grained partitioning of the end–to–end latency into respective laten-

cies of computation, network and storage operations can aid in diagnosing and resolving

user complaints. Figure 2.4 shows diagnosis logic when webpage loads successfully.

With evolving technologies clearly improving queuing, processing and transmis-

sion latency [135], understanding propagation latency becomes even more important. The

propagation latency is, above all, dictated by the Speed of light barrier and becomes a domi-

nant contributor to the end–to–end latency when communication distance increases. Prop-

agation latency thus explains, why Wide Area Network (WAN) latencies are an order of

magnitude higher than Local Area Network (LAN) latencies. Distances between communi-

cation endpoints can be conveniently approximated by Great Circle Distance (GCD) – the

shortest distance between two points on the WGS84 ellipsoid calculated using geod library,

measured along the surface and ignoring differences in elevation [62]. Section 6.2 shows

examples of the lower propagation–latency bounds over various GCDs (see Table 6.3).

The actual data path is often different from the path suggested by the GCD. Propagation

speed between communication endpoints also depends on the physical medium of the links

(e.g., fiber optics, twisted–pair copper wire, wireless) and is in the range of 2 · 108 m/s

to 3 · 108 m/s. Using a distance between communication endpoints and the theoretical

maximum propagation speed, one can calculate the lower bound that constrains minimum
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Chapter 2. Latency Background

achievable latency (Set membership 2.2). Latency, once added, never goes away.

RTTmin(gcd(src, dest)) ∈Ω(2.gcd(src, dest)
cfiber

) (2.2)

Ensuring lowest possible latency is not always practical, given high monetary

costs and effort involved. Several classes of network applications have little or no sen-

sitivity to latency and related quality parameters and, thus live just fine with unstable

high-latency lossy environment [51]. However, in the face of trends like network conver-

gence and immersive technology, ensuring a well–performing network becomes ever more

important. Figure 2.5 shows latency sensitivity and a corresponding maximum commu-

nication distance of selected traditional applications. Requirements in the form of SLAs

should reflect various demands that applications have on communication networks. Proper

network measurements and monitoring should provide data to evaluate these requirements.

2.1.1 Related Work

The majority of the past latency comprehension and tackling efforts have come

from the Internet Traffic engineering domain, striving to ensure sufficient Quality of Ser-

vice (QoS). Results exist in the form of theoretical concepts, industry solutions, RFCs
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Figure 2.5: Latency sensitivity and corresponding maximum communication distance
of selected traditional applications [114].
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2.2. Cloud Computing Network Latency

and standards. Theoretical foundation of latency engineering was given by Queuing the-

ory [70, 81] and Network calculus [82, 71]. Specific solutions such as Guaranteed Service

networks or end–to–end jitter bounds were discussed in many works [45, 58, 80]. Because

of the specificity and limited applicability of these solutions to today’s computer netwoks,

overprovisioning [94] remains the most popular way of achieving QoS.

Many negative latency–related observations have been published, e.g., that sig-

nificant portion of Internet traffic suffers from routing pathologies or that variations in

end–to–end latency indicate long congestion periods [105, 104, 106]. More bad news in-

clude latency unpredictability [74, 37] and the deep–seated tail latency [132, 87, 57, 60].

2.2 Cloud Computing Network Latency

By Cloud Computing we understand a model for enabling ubiquitous, on–demand

network access to a shared pool of configurable computing resources (e.g., networks,

servers, storage, applications, and services) that can be rapidly provisioned and released

with minimal management effort or service–provider interaction [93]. Cloud, or a Cloud

Computing system, is a set of elements and logical components participating in a particular

Cloud Computing scenario (see example in Figure 2.6). By Cloud service we understand

a set of Cloud service–provider offerings to tenants. By Cloud application we understand

tenant’s application deployed on top of selected Cloud services, often serving end users

via client appliances. Cloud service providers (CSPs) primarily provide services using

datacenters (DCs), which host computation, storage and network resources.

Internet growth and Cloud Computing service model pronounce the long–standing

problems related to network latency. Among the top causes are a number of subor-

dinate sessions, scale and great demands of the new applications, both for computing

resources and for quality of the communication networks. While the more obvious prob-

lem of computing–resource allocation has been deeply investigated, research in improving

network–quality parameters, except throughput, has not got as much early attention [52].

As a consequence, end–user’s time and patience are often the price, and deployment of

latency–sensitive applications in the public Cloud has been slow, often favoring propri-

etary solutions. Cloud customers – end users and tenants – thus still wait for satisfactory

answers to their application–performance requirements.

Cloud–service latency plays a vital role in many kinds of applications, from the
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Chapter 2. Latency Background

simple web–based services to the tactile–controlled distributed games. There are orders–

of–magnitude of difference between their latency requirements, ranging from units of sec-

onds to units of milliseconds. Low–latency demands are not limited to those applications,

but also to the properties inherent to the Cloud–Computing infrastructure, such as repli-

cation, task distribution, sharing, synchronization, offload or rapid scaling. Operation

with stringent latency requirements is thus possible only after extensive latency–based

optimizations, as there is no easy scale–out strategy.

Expressing latency using analytic methods slowly becomes next–to–impossible,

because of diverse interdependent traffic patterns and complex use cases [129]. Due to the

generally local nature of latency–reduction tools, global end–to–end optimization, that

takes all current Cloud state information into account, might be neither effective, nor

feasible, without a global informed view. Promising end–to–end efforts (e.g., DiffServ

QoS) were either not deployed at large scale or remained only in paper form. Rigorous

monitoring and understanding latency origins and symptoms are thus prerequisites to

approaching the Cloud latency problem at the global scale.

It is not just the distributed computing nature that changes latency behavior

in Cloud Computing era. Equipment virtualization and Virtual Machine (VM) migration

are techniques for maximizing resource utilization. They, however, impose certain network

demands and add an extra software layer that results in extra system overhead.

Cloud Computing also makes heavy use of offload technologies like CDNs or

Figure 2.6: Cloud Computing system. Example of various elements and components involved
in Cloud Computing. Elements and components can also be viewed as latency–contributing sources.
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2.2. Cloud Computing Network Latency

(a) Five–layer Internet protocol stack (b) Seven–layer ISO/OSI model

Figure 2.7: The Internet protocol stack (a) and ISO/OSI reference model (b).

Cloudlets, which may silently reduce latency by conducting a computation or serving

content from a location between the end user and the provider Mega–DC.

Lastly, in Cloud Computing scenarios, protocol termination of layers of network

communication stack (Figure 2.7) is often blurry. In conventional client–server interaction,

the server terminates all the upper protocol layers (i.e., responds to ICMP requests, TCP

handshakes and HTTP queries). In a typical Cloud Computing scenario, however, ICMP

request is terminated or answered by edge firewall; TCP handshake is executed with a

TCP proxy or a WAN accelerator; and HTTP query is answered by a web cache or VM.

See Figure 2.8 for illustration. Worse still, adding to the ICMP’s slow–path nature are

filtering, rate limiting and depreferential services that blur the RTT measurements or even

prevent the round trip from happening.

All aforementioned Cloud properties complicate correspondence of latency to

distance and prevent the conventional Internet WAN measurement techniques to be easily

adjusted for general Cloud Computing needs. There was some success in modeling latency

of specific environments (Cloudlet–to–Cloud and cellular–to–Cloud latency can be roughly

approximated using PDF in Equation 2.3, which denotes the Rayleigh distribution [77]).

f(x, σ) = x

σ2 e
x2/2σ2

, x ≥ 0 (2.3)
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Figure 2.8: Cloud versus traditional RTTs of various protocols. Similar round–trip–
times across protocol layers are observed in a conventional client–server scenario (a). Significant
differences are observed in a Cloud Computing scenario (b), where different protocol layers are
terminated at different middleboxes and sometimes even at different locations.

2.2.1 Related Work

Latency of specific Cloud applications and aspects was examined [50, 103], often

using tools designed in academia (such as Fathom [59] or Flowping [127]). Many works

discuss user experience of Cloud performance [91, 96]. Given an often unknown Cloud

topology and technology, network latency tomography [123] and latency predictions [89,

66, 129] remain as important techniques.

Applicable to the Cloud are industry and research techniques for reducing Inter-

net WAN latency, either by acceleration heuristics [112] or informed BGP path–selection

algorithms [131]. CDN selection algorithms [78] with redundant requests [65, 128] can be

used to remove the Cloud tail latency. Industry and academia have converged towards

improving performance by moving the Cloud closer to the end–user and offloading strate-

gic responsibilities and computation from remote Mega DCs based on latency. Concepts

such as Cloudlets, MEC or Fog Computing are successfully being deployed [111, 126].

Innovations inside the DC include data path management [107, 54, 40], transport

optimization, adjusting TCP behavior within the DC network or proposing entirely new

protocols (DCTCP [39], D3 [130], D2TCP [125], PDQ [67], pFabric [41] or delay–based

TCP [83]). Entire research groups exist that focus on predictable DC performance [44].
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Chapter 3

State of the Art

In this Chapter, we are going to review the previous fundamental results in fields

discussed in this thesis. Monitoring of Cloud Computing network performance has recently

been studied in Computer science and Networking industry and a wide array of works exists

in this area. We present those approaches that are seminal or share common traits and

objectives with our approach.

In the later Sections of this Chapter, we examine previous works in three appli-

cations areas for which we present data–driven methodologies built on top of monitoring

data. These areas are Cloud network profiling, Cloud–service benchmarking and Cloud–

service connectivity optimization.

3.1 Cloud Latency Monitoring

Cloud latency monitor is a tool used to observe latency activities on a Cloud

system. To an outside observer, a remote Cloud DC appears as a blackbox and various

tricks are needed to separate various possible latency causes, e.g., by carefully planning

the architecture and deployment of Cloud monitoring.

Very limited insights can be obtained using a commonplace one–dimensional

monitoring approach, i.e., deploying a single Vantage Point (VP) to periodically probe an

arbitrary Cloud target via a single protocol. Unnoticed go, for example, many causes of

network failures or particular path segments affecting the Cloud–service performance. The

main reasons for one–dimensional monitoring’s prevalence include limited global presence

of many tenants and monetary costs related to deploying additional VPs.

One–dimensional latency measurements are provided by free 3rd–party services
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like CloudPing [11] and CloudWatch [13], by network monitoring tools like Cacti [8],

Zabbix [36], MRTG [24] and Nagios [25], by CSP–offered monitoring products like Amazon

CloudWatch [1] and Azure Monitor [6], or by CSP–service dashboards like AWS Service

Health Dashboard [3] and Azure Status [7]. CloudPing conducts a simple httping [19]

test against several selected AWS DCs and reports mean RTT. CloudWatch also issues

small HTTP requests, but instead of measuring only AWS frontend, it also measures

services such as messaging and queuing buses. CSP dashboards and monitoring products

are availability–oriented and do not report detailed latency numbers behind their health–

checking probes.

Advanced commercially–provided monitoring tools (e.g., Renesys [29], Thou-

sandEyes [34] and Nyansa [27]) generally do not publicly disclose important details of the

measurement methodology and are usually not provided as a free 3rd–party service. Many

of the tools use only basic metrics, are network–administrator oriented, do not exhaus-

tively leverage coincidences across all data dimensions and provide a limited automation

of event interpretation, leaving much investigation to the tenant or the end user.

Renesys conducts global daily measurements from its operated traceroute in-

frastructure of DCs and virtual servers and captures metrics such as RTT and number of

responding targets. Furthermore, results can be compared to the provided organizational

or 3rd–party datasets.

ThousandEyes installs agents on communication endpoints and captures metrics

such as packet loss, DNS resolution time and response times across ThousandEyes’ DCs

and customer’s agents. Nyansa works by deploying an entire sniffer inside a customer DC

and uploading the sniffed traffic metadata to the Nyansa Cloud for processing–intensive

analysis. User can then surf over results using a provided web interface. These on–premise

deployment architectures raise many trust and privacy–related questions that represent

main adoption drawbacks.

Network–equipment vendors like Cisco provide vast tooling for latency reduc-

tion and monitoring at every layer (Figure 3.1). Since the advent of Cloud Comput-

ing, the tooling has evolved to support new needs and monitoring has been offered as a

subscription–based Cloud SaaS.

CloudSleuth [12] and CloudHarmony [10] monitor response time of public CSPs

from a global network of VPs and provide measurements for free. CloudHarmony uses

2 tests (ICMP Echo and 8B–file HTTP download). Both tests use RIPE Atlas network
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Figure 3.1: Layer–specific latency reduction and monitoring tooling from Cisco [55].

testbed [30] to issue 12 sample requests during each test interval with the slowest 2 dis-

carded, and a mean of the remaining 10 reported. CloudSleuth reports response time and

availability of major IaaS and PaaS CSPs using web UI, shown in Figure 3.2. CloudSleuth

works by hosting an identical sample application at DCs of measured CSPs. This appli-

cation is continuously being queried by tens of Internet backbone VPs residing on several

major continents.

Another approach is that of AIOps SIEM products like Splunk [32], which ana-

lyze, visualize and monitor machine–generated big data (e.g., log files or network traces).

Advances insights are provided by correlating these voluminous data from various sources.

Splunk ML toolkit allows to run user–supplied custom algorithms.

Wang, Huang, Li et al. [129] and Dhawan, Samuel, Teixeira et al. [59] have

taken a browser–based measurement approach. The latter team has developed a plat-

form called Fathom, implemented as a web–browser plugin that helps users diagnose their

connection and provides researchers and website owners with performance statistics from

the edge. Fathom’s nature and implementation provide end–user perspective, portability,

asynchronicity and millisecond accuracy. However, it requires users to install a piece of
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Figure 3.2: CloudSleuth CSP monitoring UI.

software and, as such, depends on measured webpage being opened sufficiently long, is

sensitive to stress or concurrent browsing conditions and slows page loads.

Li, Yang, Kandula et al. [86], as part of their CloudCmp test suite, measure intra–

DC network, inter–DC network and WAN. They measure path latency using ping and

TCP throughput using iperf to report performance of intra–DC and inter–DC networks.

They use the optimal WAN latency (defined as the minimum latency between a hundreds

of PlanetLab VPs and any DC owned by a CSP) to report WAN performance. Compared

in their benchmark are four CSPs: Amazon AWS, Microsoft Azure, Google AppEngine,

and Rackspace CloudServers.

Hu, Zhu, Ardi et al. [68] use tens of PlanetLab–based VPs to periodically (every

10–11 minutes) issue ICMP and HTTP probes directly against Amazon and Microsoft

VMs and storage resources. They then use the response error codes to discern failure

cases and estimate Cloud availability. They define a probability model (Equation 3.1) to

estimate the false outage rate with an increasing number of probes sent as retries when

previous requests time–out. They also note that active probing can both overestimate and
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underestimate Cloud availability – often depending on the treatment of this protocol by

CSP DC policies.

Pr(outage|k probes) = (ploss + (1− ploss) · ploss)k (3.1)

3.2 Cloud Network Profiling

Cloud Computing services, based on processing in remote DCs, exhibit latency

and performance variations, which are a compound result of various components of the

intermediate communication, computation and remote data storage. Measuring and eval-

uating performance of a Cloud service are thus highly ambiguous tasks. Nevertheless,

methods of capture, analysis and interpretation of such variations, ought to be useful es-

pecially to Cloud tenants, who can thus discern normal and anomalous Cloud behaviors,

and, as such, overturn the information deficit stemming from a very limited access to the

CSP infrastructure.

Benson, Akella, Maltz [46] and Kandula, Sengupta, Greenberg et al. [72] both

analyzed the nature of the intra–DC traffic, aiming to reveal traffic patterns and con-

gestion conditions. Among interesting observations is the traffic arrival process at the

edge switches that exhibits ON/OFF intermittent nature, where the ON/OFF durations

exhibit heavy–tailed distributions. Also, in some DCs, a small but significant fraction of

core links appears to be persistently congested, but there is enough spare capacity in the

core to alleviate congestion. Also observed was that losses on the lightly–utilized links can

be attributed to the bursty nature of the underlying applications inside the DCs.

Mizrahi and Moses [97] have studied end–to–end ICMP packet latency of Amazon

AWS and Microsoft Azure CSPs in the time and frequency domains. They show that

RTT measurements less then one second apart are autocorrelated. They also show that

conventional long–tailed distributions do not fit the measured RTT distributions. And,

using Power Spectral Density (PSD), they show that RTT frequency components exist

at high frequencies, which explains the temporarily high latency values recurring after

tens–of–seconds timeframes.

Anomaly detection is a well–known concept in telecommunications and network-

ing. We next present methods that use data from passive link measurements, RTT time-

series and datasets combined from various intra–DC sources.
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Lakhina, Crovella and Diot [79] have presented a PCA subspace method to detect,

identify source of and quantify network–wide traffic anomalies. It works by separating

the high–dimensional space of link traffic SNMP measurements into disjoint subspaces

corresponding to normal and anomalous network conditions. The space decomposition of

temporal link traffic measurement matrix Y into a set of m principal components {~vi}mi=1

is shown in Equations 3.2 and 3.3.

v1 = argmax
‖v‖=1

‖Yv‖ (3.2)

vk = argmax
‖v‖=1

‖(Y−
k−1∑
i=1

YvivTi )v‖ (3.3)

Normal S and anomalous S̄ links are discriminated using magnitude of projection

onto principal axes. Then, traffic on each link gets decomposed to normal ~y n and anoma-

lous ~y components, by projecting link traffic onto S and S̄ subspaces. The occurrence of

a volume anomaly will tend to result in a large change to ~y, determined using squared

prediction error, tested against Q–statistic. The method is general enough to diagnose

anomalies of various kinds, such as volume–based anomalies.

Zhang, Zhang, Pai et al. [133] focus on detecting and quantifying network path

anomalies. They have built a PlanetLab–based monitoring system, PlanetSeer, which

passively monitors traffic between PlanetLab and thousands of clients to detect anoma-

lous behavior, using changes in flow TTL field and TCP timeout rate. PlanetSeer then

coordinates active traceroute–based probes from many PlanetLab sites to confirm the

anomaly, characterize it and determine its scope.

Krishnamurthy, Sen, Zhang et al. [75] propose building compact summaries of the

traffic data using the notion of sketches, since keeping per–flow state is often considered

expensive or slow. The linearity property of sketches enables to summarize traffic at

various levels and implement a variety of timeseries–forecasting models (ARIMA, Holt–

Winters and various moving averages) on top of such summaries. Significant changes are

then detected by looking for flows with large forecast errors.

Forecast errors for general anomaly detection are also used by Brutlag [49]. He

constructs a model of timeseries, forecasts a future datapoint and compares the observa-

tions to the predictions. If too many observations within a temporal window are deviant,

an alarm goes off.
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The Holt–Winters forecasting model is used by both Brutlag [49] and, in a slightly

different non–seasonal form, by Krishnamurthy, Sen, Zhang et al. [75]. Holt–Winters

forecasting uses a prediction (Equation 3.4) composed of baseline alias intercept, linear

trend alias slope and seasonal trend (Equations 3.5, 3.6 and 3.7, respectively).

ŷt+1 = at + bt + ct+1−m (3.4)

at = α(yt − ct−m) + (1− α)(at−1 + bt−1) (3.5)

bt = β(at − at−1) + (1− β)bt−1 (3.6)

ct = γ(yt − at) + (1− γ)ct−m (3.7)

Mulinka and Kencl [99] have defined statistical metrics for profiling Cloud RTT

timeseries in order to detect suspicious events (see Figure 3.3). The detection works as

a sliding window, checking for significant changes in RTT–derived metric values (i.e.,

maximum value, coefficient of variation and histograms). They overcome the lack of the

definition of normal Cloud behavior by using empirically–derived optimal parameter values

to configure the model.

3.3 Cloud Service Benchmarking

With the ever–increasing trend of migration of applications to the Cloud and

Fog environments, there is a growing need to thoroughly evaluate quality of the Cloud

service itself, before deciding upon a hosting provider. Cloud–service benchmarking is

difficult though, due to the complex nature of the Cloud Computing setups, the diversity of

locations, variety of applications and their specific service quality requirements. However,

such comparison may be crucial for decision–making and for troubleshooting of services

offered by the intermediate tenants.

Folkerts, Alexandrov, Sachs et al. [63] describe the general properties an ideal

benchmarking methodology should have. They also list use cases, where benchmarking is

highly applicable.

The prevalent cross–sectional studies and benchmarking methodologies provide

only a shallow comparison of Cloud services, whereas state–of–the–art tooling for specific

comparisons of application–performance parameters, such as latency, is insufficient.
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Figure 3.3: RTT timeseries profiling for suspicious event detection [99]. Three metrics
(a), (b) and (c) independently flag a window as anomalous or not and these partial verdicts y can
then be reconciled into an ultimate decision regarding window suspicion.
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Cross–sectional studies (also called breadth and snapshot) allow quick shallow

benchmarking of Cloud resources via a test suite. Li, Yang, Kandula et al. [86] have pre-

sented CloudCmp comparator that measures computation, storage and network resources,

the last using a TCP throughput and end–to–end ICMP latency.

Chhetri, Chichin, Vo et al. have presented Smart CloudBench framework [53]

that deploys a standard transactional web benchmarking suite TPC–W and brings about

representative load conditions. They then measure latencies and record error codes in

order to estimate the cost–to–performance ratio. Based on computed scores, CSPs get

ranked by utility theory and preference policies.

Lenk, Menzel, Lipsky et al. [84] have created a reference Cloud performance

measurement VMs for various Cloud usage scenarios. They benchmark IaaS offerings by

considering type of service running on a VM. They show that performance indicators from

CSPs are not sufficient and VM performance can vary every time it is restarted.

Bocchi, Mellia, Sarni [47], as part of their Cloud storage benchmarking suite, re-

port RTTs to DCs of major Cloud storage providers. Their data confirm artificial limita-

tions imposed by CSPs, throughput variations across DCs and, in some cases, performance

domination of inter–continental data transfers over regional ones.

Menzel and Ranjan [95] have presented CloudGenius tool, which independently

assesses a suitability of the offered VM images A and infrastructure services S using

requirements R and numerical attributes Â and non–numerical attributes B̂ (Equations 3.8

and 3.9). Feasible combinations are created using Equation 3.10. Then, using user–

specified preferences wa and ws and image–service dependencies D, a composite decision

is made that yields the optimal solution (Equations 3.11 and 3.12).

f(ai, Âai , B̂ai) =


∑|Âai |
j=0 wjχ(αj,ai) ∀r ∈ RA : r = true

0 else
7→ vai (3.8)

g(sj , Âsj , B̂sj ) =


∑|Âsj |
i=0 wiχ(αi,sj ) ∀r ∈ RS : r = true

0 else
7→ vsj (3.9)

vai,sj = b : (ai, sj) 7→ f(ai, Âai , B̂ai) • g(sj , Âsj , B̂sj ) ∀i, j : (ai, sj) ∈ D (3.10)

b(ai, sj) =


wa ∗ f(·) + ws ∗ g(·) (ai, sj) ∈ D

0 else
7→ vai,sj (3.11)

max b(ai, sj) = max {va1,s1 , . . . , vam,sn} (3.12)
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Limitations surrounding the general and presented cross–sectional studies in-

clude: shallow nature that provides a little or no explanation, restrictions by CSP often

lead to invalid comparisons and a short timeframe that leads to inaccuracies. Also, they

often cannot answer questions related to the global complex distributed applications.

Collective Intelligence Benchmarking (CIB) represents a community–knowledge

approach, which uses many datasets from distributed applications and 3rd–party services

in order to ascertain a performance baseline for a given service or application. Commercial

vendors include Indeni [20] or logz.io [23].

3.4 Cloud Connectivity Optimization

Nowadays, people leverage, utilize and in some cases depend upon smart devices

to solve problems [85]. Many such use cases are enabled by or benefit from a central service

backend, increasingly hosted remotely in public Cloud DCs. This arrangement, however,

poses a non–trivial task of ensuring end–to–end Cloud connection properties, necessary for

devices to operate as expected. The reality is that even the most popular Cloud services

often degrade and occasionally fail for various reasons [88]. This uncertainty regarding

Cloud–service performance and reliability could be addressed by intelligent approaches,

which continuously re–evaluate DC performance and assign Cloud requests to momentarily

optimal DCs.

3.4.1 ISP and CSP Perspective

Sun, Yu, Anand et al. [115] abstract inter–related Cloud applications using a

virtual network and strive to accommodate it using optimal provisioning under the current

resource state of DC. They use link revenue (difference between sum of income from

allocated bandwidth resources x and sum of bandwidth costs of traffic flows fl) and

server revenue (difference between sum of server resource incomes pn and sum of server

resource costs cn) metrics inside Objective function 3.13. Furthermore, they present a

genetic algorithm heuristic for addressing a situation with unsplittable flows.

max
( ∑
p∈P,s=src(p),t=dst(p)

∑
i

xistpb −
∑
e∈Es

flecle
)

+
( ∑
m∈VF

rnmpn −
∑
m∈VF

rnmcnm
)

(3.13)
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Figure 3.4: Voronoi tessellation of weighted graph of DCs and request sources [61].

Doyle, Shorten and O’Mahony [61] have presented Stratus system that employs

Voronoi tessellation to assign Cloud requests to optimal DCs. Graph edges are weighted

using a composite metric of three weighted objectives: carbon emissions G, latency T

and electricity cost E (Equation 3.14). Voronoi partitions are then used to minimize

the distance between the sources of requests and the DCs (Objective function 3.15). An

example situation is shown in Figure 3.4.

wi = Ti +R1(Gi) +R2(Ei) (3.14)

min
N∑
i=1

∑
j∈P

d(i, j) (3.15)

Couto, Secci, Campista et al. [56] design geo–distributed DCs using disparate,

but important metrics – latency l and survivability s (i.e., a capacity of a system to operate

after failures). They formulate the problem as MILP with Objective function 3.16 and

show significant latency increase only in the case of big survivability requirements.

max(1− β)s− β l

Lmax
(3.16)

Forestiero, Mastroianni, Meo et al. [64] have presented a hierarchical approach

for inter–Cloud infrastructures, which preserves the autonomy of respective DCs and at

the same time allows for an integrated management of heterogeneous platforms. They

use carbon emissions, energy utilization and electricity cost as metrics for their multi–site

assignment algorithm.
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Table 3.1: Cloud connectivity optimization metrics from literature.

Paper Composite metric
Sun et al. [115] server revenue, link revenue
Doyle et al. [61] carbon emission, latency, electricity cost
Couto et al. [56] latency, survivability

Forestiero et al. [64] carbon emission, energy utilization, electricity cost
Tripathi et al. [122] server cost, renewables cost, brown energy cost

Zhou et al. [134] latency, computation cost
Maswood et al. [92] bandwidth cost, link utilization, resource utilization
Tomanek et al. [119] mean latency, latency deviation, timeout rate

Tripathi, Vignesh and Tamarapalli [122] use server cost, renewables cost and

brown energy cost in their capacity planning algorithm. They show that capacity provi-

sioning that considers green energy integration, not only lowers carbon footprint, but also

reduces the Total Cost of Ownership (TCO).

Zhou, He, Cheng et al. [134] provision resources for scientific workloads using

latency and computation costs. Their engine for generation of resource provisioning plan

uses probabilistic optimization and combines high–level declarative workflow optimization

goals with the user–specified latency and monetary cost constraints.

Maswood and Medhi [92] assume ISP–operated DCs d, for which a request as-

signment at ISP PoP i improves by considering bandwidth cost u, link utilization l and

resource utilization k (reflected by weighted terms in Objective function 3.17).

minα
∑
i∈I

∑
d∈D

∑
l∈L

z̃dil + µu+ γ
∑
d∈D

kd (3.17)

The said optimization techniques operate at CSP level and are usually formu-

lated as Mixed–Integer Linear Program (MILP). They score DCs using composite metrics,

reflecting objectives geared towards greening, user experience or cost (Table 3.1). Perfor-

mance evaluation is often carried out using hypothetical scenarios and varying weights of

partial objectives rather than reporting and validating improvement by instant deploy-

ment, using the actual Cloud behavior ground truth. Also, effectiveness of the techniques

strongly depends on composite metric’s weight settings, which is tricky to get right in a

real environment and, unfortunately, only a little guidance is provided.

Instead of the full integer programming, Toosi, Qu, de Assunção et al. [121]

employ a simpler change–point detection approach that adapts load distribution among

DCs to dynamic factors like electricity prices or availability of renewables (Algorithm 1).
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Algorithm 1 Green load–balancing policy [121]
R← 0
for all DCs d in the list do

c← DC’s energy consumption in Watt–hour within the time window
t← number of requests redirected to the site within the same time window
a← currently available renewable power at the site in Watt
w ← Watt–hour consumption per request (c/t)
rd ← request rate (# reqs/h) DC d can accommodate using renewables (a/w)
R← R+ rd

end for
γ ← request rate (# reqs/h) at Global–LB
if γ < R then

for all DCs d in the list do
set weight as rd/R

end for
else

find the DC d′ with the cheapest price of brown energy per request
L← γ
for all DCs d in the list except d′ do

set weight as rd/γ
L← L− r

end for
set the weight for d′ as L/γ

end if
update HAProxy weights accordingly

A fair comparison of all these disparate state–of–the–art solutions is much needed

in order to reveal importance of various objectives in various contexts and, consequently,

maximize benefits at an acceptable complexity. What makes the comparison difficult

is a mixture of vendor lock–in and request–level nature, incompatibility of objectives,

unavailability of ground truth and operation at a CSP level.

3.4.2 Edge Perspective

At the network edge, smart technology has been increasingly deployed [118],

leading to a growing network traffic and diverse applications (e.g., control, telemetry,

entertainment or update). Many popular smart appliances have strict connection–quality

requirements to remain operational – Nest thermostat’s availability [26] or Echo speech–

trigger’s latency [16] requirements to name a few. Some smart–service providers employ

an uplink monitoring from appliance–end or service–end, but others do not implement any

such provisions and rely on well–behaved or application–aware networks, like in the case

of home and mobile edge networks [69].
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Karagiannis, Gkantsidis, Key et al. [73] have proposed a cooperative host–based

system HomeMaestro to manage home and small networks by monitoring local and global

LAN application performance and detecting contention for network resources by correlat-

ing performance metrics across flows and hosts.

IoT data from the appliances are often handled by data streaming and processing

frameworks like Apache Kafka [21], Google Millwheel [38] or Amazon Kinesis [22], which

buffer and transform telemetry data inside LAN or at the edge before sending the stream

to its consumers. These consumers reside either in Cloud DCs or at the edge [48], like in

the case of major–provider offerings Amazon Greengrass [17] or Azure IoT Edge [5]. These

complex service architectures and computation–offload needs contributed to the evolution

of the conventional home routers into smart gateways [109] that are resource rich and have

extra capabilities.

3.5 Conclusion

In this Chapter, we have reviewed the previous research and development in the

areas relevant to this thesis, namely Cloud–service network latency monitoring, Cloud net-

work profiling, Cloud–service benchmarking and Cloud–service connectivity optimization.

The gist of the existing Cloud latency monitoring techniques is largely similar.

The tricky part seems to be the best possible reconciliation of methodology transparency,

cost of deployment, measurement frequency, global reach and data dependability. These

ought to be achieved via rigorous methodology and measurement architecture.

Many anomalous Cloud behaviors and valuable insights still go by unnoticed, sug-

gesting that conventional network profiling and traffic characterization still have a room to

provide an increased coverage. Cloud benchmarking state–of–the–art clearly shows a lack

of longitudinal (a.k.a. deep and continuous) techniques that consider underlying–service

performance variations and accommodate niche applications. Furthermore, Cloud ser-

vice issues and performance variations at various levels and scales of Cloud infrastructure

confirm the need for Cloud connectivity optimization.

Some conclusions with respect to the topic of this thesis can be reached based

on the works reviewed. It is the goal of this thesis to fill the aforementioned gaps by

developing methodologies that preserve the advantages and overcome the drawbacks of

the state–of–the–art techniques.
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Chapter 4

Monitoring Methodology

4.1 Introduction

In this Chapter, we describe the terminology of our distributed multidimensional

Cloud–latency monitoring methodology. We then show why and how much it increases the

accuracy of Cloud latency measurements.

4.2 Terminology

By measurements we understand RTTs of protocol message exchanges, processing

times and the entire end–to–end latencies. By multidimensional we understand measure-

ments capable of being looked at from perspectives of multiple dimensions, i.e., VPs, DCs,

communication protocol layers etc. Using a terminology that follows, a monitoring dataset

can be viewed as a set of timeseries described as:

XL,V,Q,F,B,P = {xl,v,q,f,b,pn }, n ∈ [1, 2, . . . , N ] , k ∈ [1, 2, . . . ,K] , n ≡ 0 mod k (4.1)

A timeseries ~x contains N single multidimensional RTT measurements xn, where

every successive k measurements belong to a probe train captured around the common

time instant. A measurement xn has the following dimensions:

1. Measured protocol layer of the network communication stack l ∈ L (e.g., TCP);

2. Internet Vantage Point location v ∈ V (e.g., end host in Prague);

3. Internet Vantage Point designation q ∈ Q (e.g., secondary);
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4. Measured frontend–resource DC location f ∈ F (e.g., Web server in Dublin);

5. Measured backend–resource DC location b ∈ B (e.g., SQL server in Singapore);

6. Cloud Service Provider p ∈ P (e.g., Microsoft Azure).

The entire idea, with dimensions instantiated, is captured in Figure 4.1. Note

that two situations may arise. First, in the case of frontend resource measurement, b takes

no value. Second, in the case of backend resource measurement, v takes no value. This is

necessary, because we assume that backend resources are generally not directly accessible

from the Internet.

4.3 Performance Evaluation

In this Section, we evaluate the methodology of multidimensional latency moni-

toring by using the accuracy of Cloud–service availability estimates, since outage reports

are usually the only behavioral ground–truth data CSPs disclose publicly [15]. For that

purpose, we adapt the analyses by Naldi [100] and by Hu, Zhu, Ardi et al. [68]. The for-

mer author has evaluated how the redundant ICMP probes within a measurement probe

train decrease the number of detected false–positive Cloud outages. The latter authors

have evaluated the precision with which retried measurements and additional control–

measurement sites decrease the number of detected false–positive Cloud outages and also

Figure 4.1: Multidimensional monitoring arrangement.
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Figure 4.2: State transitions between outage and normal periods [100].

Figure 4.3: Probe trains [100].

how accuracy improves with measurements over upper–layer communication protocols.

Our data capture platform (despite published earlier) is a generalization of their ideas

and has been used in applications beyond Cloud availability estimation. We paraphrase

some and conduct other of their suggested analyses, to derive suitable sizes of monitoring

dimensions to be used in the rest of this thesis.

4.3.1 ICMP Probe Trains

Naldi [100] notes that the process of availability measurement using active redun-

dant ICMP probing has impact on the obtained numeric result and emphasizes different

possible failures, including those the user is responsible to recover from (near–end rout-

ing, DNS lookup, packet loss, rate limiting). Availability A of a system, which undergoes

phases of normal operation separated by outages (Figure 4.2) is defined as a ratio between

the uptime and the total time. Using RTT measurements, it can be approximated by a

ratio of timed–out measurements to all measurements:

A = Uptime
Total time = Uptime

Uptime + Downtime = 1− Number of timeouts
Total measurements (4.2)

ICMP often does not measure the end–to–end service per se, but likely a service

frontend or a DC edge responder (see Figure 2.8). Also, ICMP messages can be filtered

and, hence, never answered. Therefore, upper–layer protocols that test the end–to–end

system and are not depreferentially treated by the DC should be used together with ICMP.
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ICMP messages should not be sent in isolation, but instead as probe trains to

achieve a better accuracy in the face of temporary glitches. As shown in Figure 4.3, the

tester sends off a probe train of 1 ≤ k ≤ K probes in a short timeframe, repeating ev-

ery T seconds. To compare the observed availability against the SLA commitments, an

observation window of length C is considered. At the end of each probing round of k mea-

surements, the tester outputs an availability statement concerning the Cloud, declaring the

Cloud service either available or not. That statement is valid till the next probing round,

when a new availability statement comes out. The observation window can therefore be

considered as B = bC/T c time blocks, such that a number of availability statements falls

into the [0, B] range, where the lowest value 0 represents a service deemed 100% unavail-

able over the observation window, while the largest possible value of B represents a 100%

availability. If Nout denotes the number of time blocks deemed unavailable, the availability

estimate can be derived using Equation 4.3.

Â = 1− Nout
B

= 1− Nout
bC/T c

(4.3)

In order to correctly estimate large availability figures, the number of blocks

must be correspondingly large, otherwise the granularity due to the blocks will mask

short unavailability periods. For example, if B = 100, the next largest availability figure

to 100% that can be estimated is 99/100 = 0.99, i.e., a 2–nine availability. If availability

figures as large as four nines are to be estimated (A = 0.9999), the minimum number

of blocks must be 10000. In order to achieve that number, given T = 10 minutes, the

observation window must be at least 10 · 10000 = 100000 minutes long, which corresponds

to slightly more than 69 days. In general, to measure availability A, the observation

window size C condition in Inequality 4.4 must hold.

C ≥ T

1−A (4.4)

In order to derive an availability statement for any single train of k probes,

Naldi [100] considers Majority Voting criterion, which declares an outage if a majority of

probes receives no responses.
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Single Probe

Naldi [100] first analyzes behavior of the Cloud using a single probe. The actual

outcome of the measurement process is impacted by both the network and the Cloud

failures, so an outage may be declared even when the Cloud is available (false outage).

If r is the true Cloud outage probability and p is the packet loss probability on

the Cloud path (Naldi assumes identical probability in both directions and failures on the

two trips uncorrelated due to time spacing), the probability of missing a response to a

single probe Pmr is given by Equation 4.5 and shown in Figure 4.4.

Pmr = p+ (1− p)r + (1− p)(1− r)p ' 2p+ r (4.5)

The biasing factor Pmr/r may be large, as shown in Figure 4.5, especially when

p > r. This general case may be simplified by looking at the two cases where the Cloud is

either available or not. Focusing on the former case, negative outcome rises and just one

case (both trips occurring with no packet loss) is reported as successful. Since the Cloud is

available, what is detected as a failure is actually a false outage. By marking the status of

the Cloud by a flag variable X (X = 1 if the Cloud is available and 0 otherwise), and the

outcome of the probe test by another flag variable Y (Y = 1 if receiving a response and 0

otherwise), the probability of a missing response, conditional to the Cloud availability

Figure 4.4: Probability of missing a response [100].
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Figure 4.5: Biasing factor [100].

using a single probe, is given by Equation 4.6.

Pmrca = P [Y = 0|X = 1] = p+ (1− p)p ' 2p (4.6)

Probe Train

Using a train of 1 ≤ k ≤ K probes, Naldi [100] then evaluates the probability of

declaring a false outage when the Cloud is perfectly available.

The criterion to output an availability statement is Majority voting, as it was

shown to be better suited than Unanimous positive and Unanimous negative voting [100].

According to the Majority voting, a Cloud outage is declared after a train of k probes

when there are at least kmin =
⌈
k+1

2

⌉
missed responses. Naldi assumes that the outcomes

of successive probes in the face of network failures are uncorrelated. The number of

missed responses in a probe train of k requests therefore follows Binomial distribution

with parameters p and k. False outage probability Pfo given k probes is then denoted by

Equation 4.7.

Pfo(k) =
k∑

i=kmin

(
i

k

)
P imrca(1− Pmrca)k−i (4.7)

Figure 4.6 shows that, for k = 9, the repetition mechanism is highly effective, i.e.,

probability of false outage is 8.10−4 even under high packet loss probability (p = 0.05).
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Figure 4.6: Probability of false outage (k = 9) [100].

Figure 4.7: Impact of retries (p = 0.01) [100].
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Size of the probe train has a significant impact. In Figure 4.7, plotted for the

packet loss probability p = 0.01, is a soft descent of false outage probability, whose

staircase–like appearance is an artifact due to the Majority rule (e.g., when passing from

4 to 5 probes the useful cases are 3 or 4 out of 4; but 3, 4, or 5 out of 5, respectively).

The figures are valid as long as the probing–round period does not become similar

to the outage duration. By marking the occurrence of the measurement instant preceding

the outage as time 0, and the next probing round taking place at time T , the outage will

take place at a random time O, 0 ≤ O ≤ T . If O is considered to be uniformly distributed,

the failure will not be detected if the recovery from the outage is achieved before the next

probing round. If the outage duration is L, that condition can be expressed as O+L < T .

The probability that the outage goes undetected is then denoted using Equation 4.8.

Pundet = P[O + L < T ] = P
[
O

T
< 1− L

T

]
=


0 if T ≤ L

1− L
T if T > L

(4.8)

This resulting probability of no detection, given by Equation 4.8, is plotted in

Figure 4.8. If outages go undetected, it could be difficult to measure SLA compliance.

The number of failures is heavily distorted since short–lived outages may go undetected,

and the number of long outages may be underestimated as well, unless the measurement

frequency is sufficiently high.

Figure 4.8: Probability of outage going undetected [100].
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4.3.2 Multiple Protocol Layers

This Subsection evaluates the benefit of probing various protocol layers and

demonstrates the benefit of additional control–measurement sites. Hu, Zhu, Ardi et al. [68]

employ a probe–retry mechanism rather than probe trains in order to estimate Cloud avail-

ability. They show that both the lower and the upper–layer protocols can overestimate

or underestimate Cloud VM and storage availability. Probing multiple layers is thus de-

sirable for root cause investigation of Cloud failures and upper layer protocols should be

preferred whenever probing multiple layers is not possible.

They first note that a probe rate of a few packets per second is low enough to

avoid most rate limiters. Prior to the similar approach by Naldi [100], they evaluate the

probability of falsely inferring an outage caused by random packet loss, as a function of

packet loss rate (Figure 4.9). Here they assume k tries and declare the service down when

all tries fail (resembling Unanimous negative voting). Using packet loss, they model the

loss of the request or response using a simple analytic model in Equation 4.9.

Pr(outage|k probes) = (ploss + (1− ploss) · ploss)k (4.9)

Without retries (k = 1), the false outage rate approximates the loss rate. As

the wide area packet loss can be around 1%, measurement without retries will show false

outages and skew estimates of Cloud availability. Fortunately, if packet loss is assumed

to be independent, then a few retries drive the false outage rate well below typical Cloud

Figure 4.9: Probability of false positive caused by random packet loss [68].
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outage rates. For example, with three tries and 1% packet loss, message loss will be

around 10−5, or five nines of availability. If network loss rates are assumed to peak at a

few percent, 4–6 tries are the appropriate sweet spot.

Hu, Zhu, Ardi et al. [68] then compare the model against experimental results for

ICMP and HTTP (both for frontend and backend). The dotted lines in Figure 4.10 show

the probability that the k–th try fails if all previous k − 1 tries failed. They evaluate this

by considering the first k tries from each observation. In the case of ICMP, retries clearly

help. An initial loss is followed by a second loss only 35–45% of the time, so 55–65% of the

time the second try succeeds, suggesting that the first try was random loss. This effect

diminishes with more retries, generally plateauing around 5 or 6 probes.

In the case of HTTP, they retry at the application layer, but the kernel also does

retries for the TCP connection (the HTTP client has a ten–second application timeout

set). The OS does three SYN transmissions in this time, providing two network–layer

retries for free for each application try. This benefit can be observed in the Figure 4.10a,

where single–try HTTP loss rates are much lower than ICMP. Kernel–layer retries help

even with application retries, as seen in Figure 4.10b, where the basic HTTP failure rate

for Amazon storage and Google storage is half that of the ICMP. However, even HTTP

benefits from multiple application–layer retries before the conditional benefit of additional

tries plateaus. Application–layer probes show even higher levels of conditional failure

than network–layer, with 50% of second HTTP attempts failing on average, presumably

because of the additional kernel–layer retries. However, this result means that 50% of

second attempts succeed, i.e., application–layer failures are sometimes transient and 5–6

probes are recommended also for the upper layer protocols.

(a) Table of probability that the first
try fails

(b) Conditional probability that k–th retry fails, given fail-
ure of prior tries

Figure 4.10: Comparison of loss and retries. Comparing loss and reties for each target and
protocol. Nine retries were used to rule out random loss [68].
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HTTP/ICMP comparison

Hu, Zhu, Ardi et al. [68] directly compare network and application–layer probes

from tens of PlanetLab VPs to judge Cloud availability. They employ multiple control–

measurement sites to rule out problems near primary VPs. This, together with sufficient

retries, avoids effects of random packet loss and transient network issues in the middle,

leaving outages at or near the CSP as the primary problem.

Cloud services are made up of Internet–facing frontends with sophisticated back-

end clusters. As mentioned in Section 2.2, in some cases, ICMP may be handled by the

frontends, while HTTP’s end–to–end tests reach the backend. Hu, Zhu, Ardi et al. [68]

then evaluate this difference. While the protocols almost always agree, there are many

small disagreements (Figure 4.11). They next show several causes of disagreement using

representative examples in strip charts, where each data column shows one probing round

(with 24–hour boundaries as vertical black lines), and each pair of rows shows ICMP and

HTTP observations from one VP (the upper, in blue, is ICMP and the lower, in red, is

HTTP). Light colors represent successful probes, medium colors represent failures of some

tries, but eventual success. Dark blue diamonds show ICMP outages (all ICMP tries fail)

and dark red squares show HTTP outages (all HTTP tries fail). White areas show cases

where one of the control–measurement sites failed to respond to either ICMP or HTTP

or where data upload to the collection site fails.

Figure 4.11: Quantifying disagreements between HTTP and ICMP probes. This in-
cludes both the HTTP success and ICMP failure (red striped bar) and the HTTP failure and ICMP
success (blue bar) [68].
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Figure 4.12: CSP–confirmed outage at Amazon EC2 Singapore site [68].

Figure 4.13: Intermittent failures from one VP to Amazon S3 in N. California [68].

Figure 4.14: ICMP–only outage to Amazon VM in N. California [68].

Figure 4.15: HTTP–only outage to Amazon VM in Singapore [68].

Figure 4.16: CSP–confirmed backend outage at Amazon S3 in Japan [68].
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Figure 4.12 shows CSP–confirmed outage at one Amazon EC2 site, reported con-

sistently by ICMP and HTTP. Figure 4.13 shows persistent problems between Polish VP

and Amazon S3 site, as both ICMP and HTTP report outages. Figure 4.14 shows a likely

route change to a route with reverse–path ICMP filtering to Switzerland. Figures 4.13

and 4.15 show HTTP–only outage to either Amazon S3 or EC2. Figure 4.16 shows a likely

Amazon S3 backend failure, because ICMP reports storage frontend operating normally.

4.3.3 Real World Verification over Long Term

We have analyzed the behavior of a periodic probe train at TCP and HTTP layers

over a long term using real CSP service measurements. Specifically, we have conducted

the evaluation of false outage probability, using analyses by Naldi [100] and Hu, Zhu, Ardi

et al. [68], suggested earlier in this Chapter. We use a 70–day RTT dataset of two major

CSPs – Amazon AWS and Microsoft Azure (described in Table 6.1 as Dataset4).

We derived outage ground truth from the dataset by going through the respective

timeseries, grouping measurements into probe trains and marking probe train as outage

if all measurements therein exceed 5 seconds. We then evaluate the estimation power of

varying probe train size – by randomly selecting k = 1, 2, 3 or 4 measurements from every

probe train and, using a Majority voting scheme, we decide whether the train measures

outage or not. (k = 5 was omitted as the selection of 5 measurements of a probe train of

size 5 is unambiguous) We then evaluate this classifier using precision and recall:

precision = |relevant ∩ retrieved|
|retrieved| recall = |relevant ∩ retrieved|

|relevant| (4.10)

Recall is by definition perfect, as the Majority voting always retrieves all outages

(any nonempty subset of 5 timed–out measurements contains only timed–out measure-

ments). Precision is expressed using false outage probability in Table 4.1. Given the

random nature of measurement selection, we have conducted 30–runs per every (k, proto-

col, VP) triplet and report mean µ and standard deviation σ. We can observe the positive

effect of redundant measurements on false outage probability, whose analytic results were

shown in Figure 4.7. A staircase–like descent of probability is caused by Majority rule that

requires 2 timeouts out of 2 or 3 measurements, but 3 timeouts out of 4 measurements to

flag an outage.
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Table 4.1: False outage probability [in %] when increasing probe train size.

protocol HTTP TCP
# probes 1 2 3 4 1 2 3 4

AU µ 47.41 26.62 27.44 13.20 67.53 36.74 34.18 15.85
σ 3.93 4.65 4.88 3.30 2.59 3.57 4.25 3.83

CZ µ 53.52 42.23 42.10 26.73 55.77 44.82 45.61 31.36
σ 2.68 1.69 1.58 2.38 2.35 1.46 1.62 1.85

JP µ 53.92 32.75 34.93 21.48 57.25 24.38 25.57 13.32
σ 4.22 5.00 4.86 2.59 3.59 3.70 4.22 1.51

BR µ 32.90 33.30 33.19 26.05 28.92 29.13 29.18 22.04
σ 0.40 0.35 0.34 0.33 0.43 0.31 0.32 0.34

US µ 47.70 9.31 9.91 4.91 48.29 10.32 10.86 5.70
σ 1.89 1.97 1.28 0.43 2.10 1.53 1.75 0.61

We can also observe that HTTP and TCP descend simultaneously, but some-

times differ significantly from either side. That confirms both the underestimation and

overestimation risk of active–probing techniques, as well as extra information gained by

probing multiple protocol layers.

4.4 Conclusion

We have formally described the variables of the multidimensional Cloud latency

monitoring methodology. We have evaluated the methodology and quantified the high

accuracy this technique exhibits, using the accuracy gains at various measurement di-

mensions. However, the measurement setup must be reasonable, because high probing

frequencies, high traffic volume or excess probes would perturb the Cloud service, skew

measurement results and introduce extra costs. In the following Chapter, we use the afore-

mentioned best practices to introduce the data capture platform as a method to conduct

measurements and store the results thereof.
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Data Capture Platform

5.1 Introduction

In this Chapter, we describe the general terminology of distributed monitors and

use it to classify our data capture platform called CLAudit. We then detail its prototype

implementation and deployment, as well as the measured Cloud variables and measurement

setup. Lastly, we show the dimensionality of the measurements1 through examples.

5.2 Monitor Classification

A monitor is a tool used to observe activities on a system. In general, monitors

observe the performance of systems, collect performance statistics, analyze the data, and

display results. Some also identify problem areas and suggest remedies [70].

Monitors are classified based on a number of characteristics, such as the imple-

mentation level, trigger mechanism and result–displaying ability.

Depending upon the level at which a monitor is implemented, it is classified as

software, hardware, firmware or hybrid monitor.

Depending upon the mechanism that triggers the monitor into action, a monitor

is classified as event driven or timer driven (sampling monitor). An event–driven monitor

is activated only by the occurrence of certain events. Thus, there is negligible monitoring

overhead if the event is rare. But if the event is frequent, it may cause too much overhead.

The sampling monitor is activated at fixed time intervals by clock interrupts. Sampling

monitors are ideal for observing frequent events. On activation, the monitor records
1We use the terms data and measurements interchangeably
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Table 5.1: CLAudit monitor attributes [70].

Attribute Value
state–changing event network, storage and computation latency dynamics

measured domain message RTT

logging trace 8–tuple (VP, designation, CSP, DC frontend,
DC backend, protocol, RTT, timestamp)

system overhead storage + tens–to–hundreds of lightweight
spread–out network messages per few seconds

input rate sampling rate of 102 per hour
input width 108 bytes
resolution milliseconds, can measure simultaneous events

device–status registers and counters. The frequency of sampling is determined by the

event frequency and the desired resolution.

Another way to classify monitors is according to their result–displaying ability.

On–line monitors display the system state either continuously or at frequent intervals.

Batch monitors, on the other hand, collect data that can be analyzed later using a separate

programmatic analysis.

We have implemented the Multidimensional Cloud latency monitoring method-

ology through a distributed software sampling on–line and batch monitor called CLAudit.

Its attributes are summarized in Table 5.1.

Distributed–system monitors are conveniently viewed using layers of their func-

tions. Each layer makes use of the services provided by the lower layers and extends the

available facilities to the upper layer. Here we paraphrase a reference description of each

layer [70], as well as its instantiation inside the CLAudit (see Figure 5.1).

Observation layer gathers raw data about individual components of the system. Gen-

erally, each component may have an observer designed specifically for it. Thus, there may

be several observers located on different subsystems.

Collection layer collects data from various observers. It is possible to have more than

one collector in large systems.

Analysis layer analyzes the data gathered by various collectors. It may consist of various

statistical routines to summarize the data characteristics. Simple analysis such as counting

of events is conducted most efficiently in the observer and is not considered part of the

analyzer.

Presentation layer deals with human user interface. It produces, for example, reports,

displays and alarms.
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frontend#nfrontend#2frontend#1
Observation

Collection

Analysis
Presentation
Interpretation

Console
Management

Central	server

(alias	Monitor)

VP#1 VP#2 VP#n

backend#1 backend#2 backend#n

Monitored	Cloud	
subsystems

…
…
…

Figure 5.1: Correspondence of distributed–system–monitor layers (left) to CLAudit
(right). Every VP observes every frontend’s latency and every frontend observes every backend’s
latency. Hierarchical data collection consists of frontends advertising to VPs, followed by a periodic
solicitation by the central server. Upper layer functions are implemented on the central server.

Interpretation layer is an intelligent entity (usually a human being or an expert system)

that can make meaningful interpretations of the data. This generally requires multiple

rules and trend analyses. Simple threshold–based alarms may be considered part of the

presenter rather than of the interpreter, which usually requires the application of more

sophisticated rules.

Console layer provides an interface to control the system parameters and states. Strictly

speaking, console is not a part of the monitor. However, the monitoring and control

functions are often used together and it is desirable to allow system control, as well as

system observation facilities to be used together.

Management layer makes the decision to set or change system parameters or configu-

rations based on interpretation of monitored performance. The manager implements its

decision using a console. A software manager component exists only in monitors with

automated monitoring and control facilities.

CLAudit components that implement the aforementioned layers of functionality (Fig-

ure 5.1) are as follows:

Vantage Points (Observation, Collection)

Vantage Points (VPs) emulate client appliances of Cloud application and service users.

Via active probing using various real protocols, they record latencies that end users really

perceive when using Cloud applications and services. To maintain comparability, VPs are
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homogeneous in terms of OS and measurement software. VPs are remotely controlled and

instructed to issue probe trains towards applications hosted on Frontend servers to obtain

RTTs at various measured protocol layers, providing evidence for reasoning about Cloud

application and service behavior. VPs are geographically dispersed to obtain end–user

perspectives from around the globe. For the sake of redundancy and validation, VPs are

deployed in triplets in every region (two VPs in a single campus and a third, backup VP,

in different campus nearby).

Frontend servers (Observation, Monitored subsystem)

Frontends emulate client–facing servers deployed in the Cloud DCs (in our context, they re-

spond to VP requests). They are provisioned in the exact same way as regular production–

environment servers and are equipped with various real applications and services. As such,

a frontend cannot distinguish between serving to end–user’s client and to a CLAudit VP.

Besides being among the monitored Cloud subsystems, frontends also fulfill the observer

role by measuring RTTs to backend servers and advertising these to VPs. The collection

function is implemented using a trap instruction inside the response–composing application

code, which triggers a probing round against a predefined backend server and attaches the

result to the response payload for the VP. Frontends are geographically dispersed across

public CSP DCs, allowing to evaluate various real–world setups, such as a geo–distributed

Cloud application or a Cloud application with redundancy.

Backend servers (Monitored subsystem)

Backends provide data when frontends need them to compose the response for client (e.g.,

a dynamic webpage backend or authentication service). Backends are not involved in

all possible CLAudit interactions (e.g., a frontend serving a static webpage to a client).

Whenever backends are queried, the overall user–perceived application latency increases as

the response–composing process is often blocked at the frontend. Backends neither observe

anything, nor collect measurements. They just serve as monitored Cloud subsystems.

Some backends may be co–located with frontends within a single DC, whereas other

backends may reside in DCs elsewhere. Backend measurements allow to evaluate multitier

application setups (e.g., remote or geo–redundant data store).

Monitor (Collection, Analysis, Presentation, Interpretation, Console, Management)

The Monitor is a central server that fulfills all the monitoring functions except those of

the observation layer. It is the top–of–the–hierarchy collector, as it periodically solicits
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measurements from all VPs (subordinate collectors). It also performs measurement inter-

pretations, archives past measurements, instructs VPs about measurement adjustments in

a user–configurable way and visualizes near–realtime measurements and analysis results.

The Monitor is to be hosted on high–end servers with failover capabilities.

5.3 Prototype

CLAudit is designed to be generally applicable, e.g., as a 3rd–party data service,

a CSP monitoring solution or as SLA–verification tool for tenants. We have assembled

a CLAudit prototype using readily available software tools, PlanetLab NREN [113, 28]

and basic–tier subscriptions at Microsoft Azure [4] and Amazon AWS [2] public CSPs.

Frontend servers are implemented as web servers and backend servers are implemented

as database servers. We have implemented a subset of network communication proto-

cols and measured their latency using several variables. We have created a representative

deployment of Cloud clients and deployed comparable services at common CSP DC loca-

tions. Using a planned measurement process and the webpage–retrive scenarios, we have

conducted a trial monitoring run and visualized the obtained measurement dimensionality.

5.3.1 Measurement Setup

The request–response nature of many existing communication protocols allows for

measuring RTT and deriving latency. CLAudit does that in a continuous, simultaneous,

large–scale distributed manner. Many Cloud–related latencies, a.k.a. variables in CLAudit

terminology, are measured. Table 5.2 describes variables measured in static and dynamic

webpage–retrieve scenarios (shown in Figure 5.2).

The relevant variables are measured via active probing between every (VP, fron-

tend) and (frontend, backend) pairs. There is neither a frontend, nor a backend selection

algorithm, as all pairwise combinations are measured using backends predefined at VPs.

CLAudit thus records Internet, intra–DC and inter–DC latencies.

Note that tcp2ws, tracert and tcp2db do not involve the actual request processing

at server and, as such, approximate network latency well. End–to–end variables, over-

all(null) and overall(db), reflect web–browser user experience. Respective protocol laten-

cies, however, do not completely add up to these end–to–end variables, due to additional

TCP/IP stack processing latencies (as seen through inter–interval gaps in Figure 5.2).

These are difficult to capture externally. The secondary motivation behind overall(null)
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Table 5.2: Measured variables.

measured
variable description backend

involved

tcp2ws
Time elapsed between VP’s TCP

SYN sent and TCP SYN ACK from
web server received

no

tracert

Time elapsed between VP’s
ICMP Echo Request sent and ICMP Time Exceeded

from farthest reachable network hop received.
In the 2013 dataset, ICMP Time Exceeded from

a host containing an IATA–like airport code of target
DC location was used instead

no

tcp2db
Time elapsed between frontend web server’s

TCP SYN sent and TCP SYN ACK from backend
database server received

yes

sql2db
Time elapsed between frontend web server’s

SQL query sent and SQL reply from backend
database server received

yes

http2ws
Time elapsed between VP’s HTTP request

sent and static web HTTP response from frontend
web server received

no

overall(db)
Time elapsed between VP’s TCP SYN sent

and HTTP response from frontend web server,
incorporating backend database data, received

yes

overall(null)
Time elapsed between VP’s TCP SYN

sent and HTTP response from frontend web
server received

no

(a) Static webpage retrieve (b) Dynamic webpage retrieve

Figure 5.2: Webpage retrieve–time breakdown. Static and dynamic webpage retrieves with
latencies measured by CLAudit.
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and overall(db) is to validate the subordinate protocol measurements (e.g., TCP), via an

independent measurement conducted using different software tools.

A single VP probing round consists of a train of five requests of every measured

variable (Table 5.2) and up to five respective responses received, repeating every three or

four minutes2. This setup and other parameters are based on findings from Section 4.3,

which guides the minimal values that should be used to achieve highly–accurate dependable

data. Higher values (e.g., of probing round period, probe train size, number of protocols)

are not cost–efficient and would perturb the Cloud and skew measurements.

Measurements are asynchronous to avoid coordinated omission of information

(i.e., not backing subsequent measurements off due to delayed or missing response to

previous measurements). Measurements are not intended to be a stress test – neither

PlanetLab’s, nor CSP’s acceptable user policy is violated. Partly because there are just

a few packets generated and partly because these are spread over time due to unequal

distances between VPs and DCs. Monetary cost of the experiment remains thus low.

RTTs are measured in milliseconds, rounded down to a nearest integer. Smaller

resolution would increase the error due to shared and virtualized nature of PlanetLab,

which introduces multiplexing delays. All requests have a reasonable five seconds timeout

set, effectively treating timeouts and failures to respond the same way. The five RTTs

recorded at every time instant can be viewed as five random variables. The described

measurement setup allows to reveal behavioral patterns lasting tens of minutes or longer.

Shorter events cannot be effectively distinguished.

5.3.2 Implementation

Various platforms, execution environments, software tools and other technologies

were used to instantiate the CLAudit prototype. Figure 5.3 depicts CLAudit components

along with respective execution environments that host key monitor functions and modules

for inter–component interactions.

All VP nodes are PlanetLab i386 machines running Fedora Core 8 OS and are

provisioned with OSS packages adjusted for measurement–probe generation and RTT–

measurement purposes. A cron scheduler, running on the VPs, is instructed to read the

YAML configuration file on every probing round. The recorded quintuple of RTTs is

appended to a daily CSV log along with timestamps. Measurements are locally buffered
2three minutes in 2013–2015 and four minutes from 2016 on
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Figure 5.3: Component view of CLAudit. Four major components along with execution
environments that host functions and modules for inter–component protocol interactions.

and downloaded by the central server every twenty minutes. Measurements are trans-

ferred uncompressed in CSV–formatted files. The actual measurement script is written

in Python and calls various GNU UNIX utilities (curl [14], httping [19], tcping [33]

and traceroute [35]). The implementation is modular and allows for easy extension by

new probe types to mimic various Cloud applications. All VPs have their clock synchro-

nized via the Network Time Protocol (NTP) to enable comparison of the asynchronously

measured data with a negligible clock skew.

Frontend servers are implemented using basic–tier shared PaaS VMs of public

CSPs. At Microsoft DCs, frontends are implemented using the Azure Web Apps. At

Amazon DCs, frontends are implemented using the AWS Elastic Beanstalk. At every

measured DC, a frontend consists of a single instance without backup. The measured

Cloud application is a web container combining tiny static and dynamic webpages. When

an HTTP request for a dynamic webpage arrives, the application is instructed to issue

a database SQL query and record a database TCP and SQL RTTs into HTTP response

for the VP (Figure 5.2b). The static or the dynamic webpage fits inside a single HTTP

response packet. The SQL querying mechanism is implemented using the PHP PDO API

and the TCP handshake is implemented using the raw TCP socket PHP API.

Backend servers are implemented using basic–tier shared PaaS VMs of public

CSPs. At Microsoft DCs, backends are implemented using the Azure SQL at S1 perfor-

mance level. At Amazon DCs, backends are implemented using the MySQL RDS. At
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every measured DC, a backend consists of a single instance without backup. There is no

data stored inside the databases, as frontends request only a random number. Backends

do not interact with VPs directly, but only via frontends.

The Monitor is implemented using a single 16GB Intel x64 Ubuntu server. It

interacts with the VPs via SSH channels for measurement setup adjustments and via SCP

channels for measurements transfer. It stores the data downloaded from the VPs inside

RAID. Advanced data analysis and interpretation are conducted online on–demand using

MATLAB and Python scripts. Latency timeseries, past measurements, analysis results,

alarm–mode metrics and Cloud failure monitoring traces are visualized online through

CLAudit website that is implemented using JavaScript plotting libraries and PHP scripts,

hosted on the Monitor’s local Apache Tomcat webserver. The Console is implemented

using a distributed YAML configuration file and allows for adjusting an ON/OFF switch,

a probing round period and a set of measured frontends and backends. The prototype

does not have monitor management facility automated and human input is thus necessary.

Additional issues had to be addressed to make measurements dependable. In the

following paragraphs, we describe preprocessing tasks such as emptying HTTP caches,

populating DNS caches, warming connections up, preventing database connection pooling,

selecting protocol versions, avoiding ICMP message filtering and CDN RTT cutting.

HTTP is a popular protocol suitable for caching. It can reduce the number of

unnecessary round trips and the overall amount of the HTTP data transferred. This blurs

our measurements in the cases where we expect a certain number of round trips to occur.

Thus, VP caching capabilities have been turned off. A similar problem concerns HTTP

version 1.1, which uses persistent TCP connections that prevent future TCP handshakes

from happening. HTTP 1.0 was used instead. CSP’s large CDN infrastructure can present

end users an illusion of the original resource or application being nearby, which is not

acceptable in the cases when we seek data from the original Mega–DC in order to measure

its network RTT.

Web applications also often maintain database connection pools. These keep the

TCP channel up and, following the first successful connection, just the SQL messages

are exchanged over the channel. Because we gather, among others, raw periodic TCP

RTTs between the web server and the database, we force a TCP handshake, by purging

connection pools. Finally, SQL data caching was prevented by always requesting random

data from the database.
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Figure 5.4: CLAudit deployment. VPs are represented by laptops, frontend servers by globe
icons and backend servers by cylinder icons. Many of the monitor functions are executed on the
central server, represented by lens icon. Continuous and dashed curves depict subset of VP–to–
frontend and frontend–to–backend measurements, respectively.

5.3.3 Deployment

CLAudit monitoring was launched in 2013. Given the ever–changing set of avail-

able PlanetLab nodes, the VP deployment has been modified several times, striving to

preserve comparability and ensure monitoring continuity. CLAudit prototype deployment,

as of 2017, is reflected by Figure 5.4.

All CLAudit components are distributed worldwide, but not uniformly. VPs are

deployed in representative locations on each continent apart from Africa. In 2017, they

resided in Atlanta (USA), Prague (Czech Republic), Hiroshima (Japan) and Melbourne

(Australia). VPs exist in triplets for backup purposes in the case of PlanetLab maintenance

or failure event. The third VP always resides in an independent campus, different from that

of the primary and secondary VPs (backup campus is in the same country though, ideally

nearby). Measurements are conducted simultaneously from all three VPs. At times when

one VP is not operational due to arbitrary local or campus–wide event, measurements from

the backup VP are used for analysis. Other uses for multiple VPs include verification of

measurements and reasoning about anomalies.

Frontend and backend servers are also distributed globally, hosted in the Mi-

crosoft Azure and Amazon AWS DCs. In 2017, frontends resided in California (USA),

Virginia (USA), Singapore (Singapore) and Dublin (Ireland). Backends resided in Cali-

fornia (USA), Tokyo (Japan), Singapore (Singapore) and Dublin (Ireland). The rationale
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Figure 5.5: CLAudit landing page.

behind the server placement is twofold. Firstly, servers have to be at common DC loca-

tions of the CSPs, to allow for provider benchmarking and other comparisons. Secondly,

it has to be possible to evaluate various popular application–deployment setups (e.g., geo–

redundacy, remote storage or DNS load–balanced frontend). Since CLAudit measures

every pairwise combination of frontend and backend, various application–deployment al-

ternatives are evaluated, including frontend and backend in the same DC, on the same

continent or on the other side of the world.

The Monitor is hosted on premises of the Czech Technical University in Prague

(CTU). The Monitor hosts the CLAudit project website (Figure 5.5), which, among others,

used to visualize near–realtime measurements and still provides past–data archives. The

data is available to the research community, as well as to the general public, under ODC–By

license. The project website is http://claudit.feld.cvut.cz

5.3.4 Measurement Examples

From 0:00 UTC on April 29, 2013, we have conducted a one–week trial CLAudit

monitoring run against Microsoft Azure California DC. This Subsection presents two

examples of the data collected by CLAudit. The data represents ordinary Cloud service

behavior without notable anomalies, viewed at two different dimensions of the data.
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Figure 5.6: VP dimension example. A single–week tcp2ws timeseries, as measured by VPs
(Brazil, USA and Japan) TCP–handshaking with California frontend. Normal Cloud network
behavior is observed.

Vantage Point Dimension

The first example shows a VP dimension of the tcp2ws variable (Time elapsed

between VP’s TCP SYN sent and TCP SYN ACK from frontend server received) in the

static webpage retrieve scenario. Datapoints in Figure 5.6 are median RTTs from Brazil,

US and Japan VPs. Median (the 3rd largest RTT within every probe train) was used to

smooth out the timeseries and filter outliers.

Latency observed by US Seattle3 VP was very stable. It experienced low volatility

and only minor spikes. The RTTs were roughly two times the optimal RTT (according to

Table 6.3). The more distant VPs not surprisingly experienced more severe fluctuations

and spikes. Figure 5.6 thus shows more or less normal behavior with VPs from more distant

locations and inferior network infrastructures experiencing pronounced adverse network

effects. Mostly observed were local effects with a couple of suspicious RTT increases

simultaneously observed by pairs of VPs, increasing a likelihood of an issue with impact

beyond local network.

3In 2013, US VP was located in Seattle

54



5.3. Prototype

1800 2000 2200 2400 2600 2800
50

100

150

200

250

300

350

400

sample no.

R
T

T
 l

a
te

n
c

y
 [

m
s

]

 

 

overall (cz)
http2ws (cz)
tcp2ws (cz)
tracert (cz)
optimum (cz)

(null)

Day 5 Day 6

RT
T 

[m
s]

Czech VP to Bay Area DCCzech VP to California DC

Figure 5.7: Protocol dimension example. Roughly two days of data from various protocol
layers of frontend server in California, as measured by Czech VP. The constant precalculated
light’s RTT denotes the optimal RTT.

Protocol Layer Dimension

The example in Figure 5.7 shows a full protocol–layer dimension, i.e., all the

measured variables relevant to a frontend server in the static webpage retrieve scenario,

as measured during two days by the Czech VP.

Light’s RTT denotes the optimum, since the lower one–way propagation delay

bound is 31 ms and signal in fiber does two round–trips at ∼66% speed of light. tracert

RTTs are located slightly below those of tcp2ws and http2ws timeseries, because the ICMP

packets did not traverse to the ultimate frontend server inside the DC (the reason being

the Microsoft Azure filtering policy). tcp2ws and http2ws timeseries are almost identical,

except for occasional HTTP spikes. Combined, a single round trip time of TCP followed

by a single round trip time of HTTP plus a request processing delay, together approximate

user–perceived end–to–end latency (denoted by the overall variable). That corresponds

to opening of a small static webpage in the web browser for the first time (assuming no

rendering delay).
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5.4 Conclusion

In this Chapter, we have described a distributed–system monitor called Cloud

Latency Auditing Platform (CLAudit). Importantly, it serves as the multidimensional

measurements–capturing platform, capable of rigorous recording of various network laten-

cies involved in client interactions with Cloud applications and services. It can be used as

a 3rd–party data service, CSP monitoring solution, SLA verification tool for tenants or re-

search experimentation tool. We have implemented and demonstrated the representative

prototype. This obviously lacks in scale and features compared to full–fledged hypothetical

production implementations, but already provides representative global coverage, support

for five frontend and backend protocols and facilities for monitoring configuration, la-

tency timeseries visualization and automatic detection of suspicious events in collected

measurements of target CSPs.
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Applications

In this Chapter, we first describe RTT datasets of major public Cloud Service

Providers (CSPs), used for performance evaluation of both the Multidimensional latency

measurement methodology and the data–driven application methodologies. In the follow-

ing Sections, we describe and evaluate the latter methodologies that extend the state–of–

the–art in three Cloud performance application areas.

Namely, in Section 6.2, we describe and analyze anomalous behaviors found in

latency timeseries and then describe insights into and trends of Cloud service evolution,

using Network profiling by selected metrics and statistical measures.

In Section 6.3, we describe measurement preprocessing and the subsequent Bench-

marking methodology that identifies significant differences in a Cloud service performance

across CSPs, their DCs and resources therein.

In Section 6.4, we formulate the Optimization methodology that leads to mini-

mum adverse network effects on Cloud traffic and avoids problematic DCs. We also present

an implementation using the router application plane.

6.1 Performance Evaluation Datasets

The CLAudit prototype used to collect measurements of static and dynamic

webpage retrieves for almost five years. We use four subsets of the collected multidimen-

sional measurements to experimentally evaluate our proposed data–driven applications.

Specifically, we have used two comparable data blocks for deriving Cloud insights and

evolutionary trends. We have used another two blocks, one for Cloud network profiling

and the other one for Cloud service benchmarking and Cloud connectivity optimization
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evaluation (the results based on the last block have the CSP names obfuscated). These

four datasets are summarized in Table 6.1.

Over the course of CLAudit measurements, changes in a set of measured DCs,

protocols and VPs were made due to various reasons. Nevertheless, preserving the com-

parability of the measurements was always a top priority.

An important dataset–timeframe selection criterion was the PlanetLab stabil-

ity. Measurements may be disrupted for various near–end reasons, such as maintenance,

overload or policy. Table 6.2 breaks down the causes of measurement disruptions, man-

ifesting as timeouts in Dataset2 and Dataset3. The observed improvement at Dataset3

over Dataset2 is thus caused by both the availability improvements on the CSP side and

by CLAudit re–engineering. The only simultaneous failure of both co–located VPs hap-

pened in 2013, between May 12 and May 13, rendering a piece of data irrecoverable and

triggering the need for a third, backup VP. Industry–grade CLAudit deployments would

likely use dedicated, stable and controlled machines for hosting VP functions.

CTU hosts a webpage with archived measurements (Figure 6.1). Also, from

early–2013 to late–2017, this webpage was used to visualize near–realtime measurements,

alarm–mode metrics, Cloud failure traces and metrics for suspicious–behavior detection.

The datasets are still available to the research community, as well as to the general public,

under ODC–By license. The project URL is http://claudit.feld.cvut.cz

Figure 6.1: Online measurement visualizations.
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Table 6.1: Datasets. Used for experimental evaluation of the monitoring and the data–driven methodologies for Cloud service improvements.

Dataset1 Dataset2 Dataset3 Dataset4
Year 2013 2013 2016 2016

Timeframe Apr 29 – May 5 May 10 – Jun 4 Jan 10 – Feb 4 Jan 10 – Mar 19
Timeout threshold 5 seconds 5 seconds 5 seconds 10 seconds

Timeout visualized as 0 seconds 5 seconds 5 seconds 10 seconds
Probing round period 3 minutes 3 minutes 4 minutes 4 minutes

Probe train size 5 probes 5 probes 5 probes 5 probes
Protocols IP, TCP, HTTP, SQL IP, TCP, HTTP, SQL IP, TCP, HTTP, SQL TCP, HTTP, SQL

VPs Australia, Czech Rep. Australia, Czech Rep. Australia, Czech Rep. Australia, Czech Rep.
Japan, Brazil, USA, Russia Japan, Brazil, USA, Russia Japan, Brazil, USA Japan, USA

CSPs MS Azure MS Azure MS Azure Amazon AWS, MS Azure

Frontends California, Dublin California, Dublin California, Dublin California, Dublin
Chicago, Hong Kong Chicago, Hong Kong Singapore, Virginia

Backends California, Dublin California, Dublin California, Dublin California, Dublin
Singapore, Hong Kong Singapore, Hong Kong Singapore Singapore, Tokyo

CSP name obfuscation no no no yes

Table 6.2: Fraction of timeouts. Quantification of 5000 ms samples inside Dataset2 and Dataset3, together with causes and their breakdown.

Dataset2 Dataset3
Fraction 6.97% (66128 samples) 0.16% (1143 samples)
Cause PlanetLab Other PlanetLab Other

Fraction 63.28% 36.72% 24.85% 75.15%
Backend DC - None California Dublin Singapore - None California Dublin Singapore

Fraction of Other - 35.60% 0.55% 0.27% 0.29% - 35.26% 11.99% 12.69% 15.22%
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6.2 Cloud Network Profiling

6.2.1 Introduction

In this Section, we present a detailed analysis of the Microsoft Azure measure-

ments, including notable anomalous behaviors, and a comparison of Cloud–service latency

between two periods (i.e., two comparable blocks of CLAudit measurements, collected in

2013 and 2016).

6.2.2 Anomalies

CLAudit measurements, among others, allow to reveal certain anomalies and pro-

vide background for their explanation. Here we present three examples of such anomalies,

discovered manually inside Dataset1 (Table 6.1) and not reported by Microsoft Azure CSP.

We then analyze and reason about them. Such anomalies are not unusual, but also not

necessarily inevitable. We believe that suitable monitoring and analysis can help decrease

the occurrence of such anomalies and make the Cloud services more predictable.

Persistent HTTP hike

This anomaly concerns the Illinois DC, specifically the web server hosting our

web container. Figure 6.2 visualizes the timeseries of interest. The incident began after

6 p.m. UTC on a weekday. It took almost 50 minutes for the server to fully recover and

continue serving clients with low stable RTT.

The incident was perceived by all VPs. HTTP latency increased by an order of

magnitude – RTTs, previously ranging from 50 to 500 milliseconds, increased to over 5

seconds for over 25 minutes. RTTs then started to decrease simultaneously and returned

to the baseline after another 25–minute recovery period. This hike was not reflected in the

TCP RTTs, measured against the same web server. That effectively points to a VM/web

server issue as a likely cause. DC mechanisms such as TCP splitting or interception might

prevented VP TCP connections from reaching the same ultimate target as HTTP, but

from the point of view of the VPs, the transport layer performance was intact, whereas

application layer performance was heavily impaired. Interestingly, this anomaly occurred

almost simultaneously also in the Dublin DC, which might point to additional causes (e.g.,

VM migrations or various types of attacks).
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Figure 6.2: HTTP RTT hike. An order of magnitude increase of HTTP RTT followed by a
slow recovery, as perceived by all CLAudit VPs worldwide. The TCP RTTs targeting the identical
web server remained stable, as shown at the bottom. Timed–out measurements as visualized as
0 ms samples.

Path Issue

This anomaly concerns the California DC, specifically the web server hosting

our web container. Figure 6.3a visualizes relevant network–layer and Figure 6.3b relevant

transport and application–layer timeseries. A combination of TCP, HTTP and ICMP

measurements confirmed the problem’s wide span and, thus multiple Cloud applications

were affected simultaneously. The anomaly was detected by CLAudit on Saturday after

12 p.m. UTC and disappeared entirely on Monday around 12 a.m. UTC.

This anomaly was first perceived by the US VP through persistent, almost dou-

bled ICMP, TCP and HTTP RTTs. This state suddenly disappeared around 12 a.m.

UTC on Sunday. Shortly after it disappeared, the situation has repeated for the other

VPs (Brazil, Czech Republic, Russia and Japan). The RTT increase was most intensively

perceived by the Japan VPs. The Czech, Brazil and Russia VPs experienced lower, but

still notable RTT increase. The situation suddenly disappeared before Monday 12 a.m.

UTC and has not repeated itself again during Dataset1 observation period, ruling out

regular weekly events.

Geographical VP distribution exhibited no temporal relation to the anomaly

occurrence. Symptoms point to routing manipulations and traffic diversions, possibly
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(a) Global network–layer RTT increases

(b) Upper–layer degradations, as observed by US VP

Figure 6.3: Path issue. Persistent RTT increase at California DC, perceived by the US VP and
followed by a simultaneous persistent RTT increase perceived by all other VPs. The measurements
suggest routing manipulation as a possible explanation. Timed–out measurements are visualized as
0 ms samples.
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related to the weekend period. Whether intentional or not, this anomaly persistently

degraded user–perceived latency of a number of applications, especially the ones with

demand peaking on weekends.

Periodic Fluctuation

This anomaly concerns a geo–distributed application, specifically the connection

between Azure frontends and backends. Figure 6.4 visualizes relevant timeseries and the

deeper analysis of connection between Hong Kong DC and Dublin DC. Visualized in

Figure 6.4a is the Weekday 12 a.m. to 11 p.m. UTC of overall(db) timeseries (overall(db)

variable combines processing latencies, two different TCP round trips, one HTTP round

trip and one SQL round trip, as shown in Figure 5.2). The measurements exhibited

predictable periodic characteristics, persistent throughout the entire observation period.

RTTs were eclectically shifting every 145 minutes, between periods of low stable latency

and periods of high volatile latency.

Figure 6.4b shows the RTT histogram of Japan VP, with a notable distance

between modes and a significant gap between the clusters. Specifically, modes are located

around 725 ms and 2200 ms. Both parts of the distribution are right–skewed and the

values that concentrate above the modes form a tail. The multitier–application user thus

experienced two very different service qualities in a regularly–alternating fashion.

To some extent, this periodic effect was observed with all other pairwise DC

combinations. Deeper analysis in Figure 6.4c reveals that the degraded periods are induced

by the interbehavior of HTTP and SQL protocols. The protocol breakdown in this Figure

shows no signs of fluctuations when TCP or SQL requests are sent in isolation, or when

a static HTTP retrieve takes place. Determining the true origin of the problem is beyond

CLAudit’s capabilities at that time and necessitates a deeper diagnostic of SQL and HTTP

interbehavior on Azure servers.
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Figure 6.4: Periodic latency anomaly of multitier geo–distributed application. Alternating low stable and high volatile periods of user–perceived
latency of multitier web application.
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6.2.3 Insights

This Subsection presents Microsoft Azure Cloud insights derived from Dataset2

and Dataset3 (Table 6.1). Included are average latency per kilometer metric, DC and

protocol availability, latency tail and multimodality, together with notable trends over

time. All these are subject to the fundamental Speed of light barrier, whose imposed

minimum–latency lower bounds are summarized in Table 6.3

Average Latency per Distance

Table 6.4 summarizes the Dataset2 and Dataset3 using 50th percentile, selected

because of its robustness. To assess the Cloud–path latency in particular regions of the

world, we define a universal metric called average latency per kilometer (Equation 6.1),

which amounts to the latency accumulated by packet’s propagation over one kilometer

distance and, as such, ρ is an indicator of a Cloud path performance in a given region.

ρ(src,dest) = X̆

2.dist(src,dest) (6.1)

X̆ is any kind of data summary, in this analysis we use median. The more VPs in

the DC region, the greater the confidence. The optimal ρ is approximately 5.05 µs.m−1.

Using that value as a reference, distance from optimum can be easily seen from the actual

measured ρs in Table 6.4.

The best achieved latency was a little over that of the light and was observed

on the path between Australia and California. The likely explanations include, first, both

sites being situated on the opposite coast of ocean where the data paths encounter fewer

network hops and, second, the underseas cables approximating the Great–circle distance

well [90]. The worst ρs (over three times the light’s) were observed on the intracontinental

paths, where the data paths include many hops and, because of terrain and borders, are

rarely conducted along the path suggested by the Great circle.
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ρ has mostly decreased between 2013 and 2016, resulting in lower–latency DC

connections. Locating the particular improved network segments is difficult and would

require a new set of measurements within partitioned paths. Hence, it is not clear whom

the bits of improvement should be attributed to, be it the CSP, the ISP or the PlanetLab.

The consistent decrease in median latency, observed by all–but–Brazil VPs at all

protocol layers, indicates an improvement in Cloud connectivity in general. Brazil VP

observed an >20 ms increase for all DC frontends and protocol layers. This multidimen-

sional observation indicates a degradation somewhere between the Belo Horizonte access

connection and Microsoft’s South American connection in between 2013 and 2016.

Since Azure DCs do not to let traceroute ICMP packets in, these packets bounce

off the DC edge. This coincidentally allows us to dissect the latency improvements made

inside the DC from those made outside. By subtracting median ICMP latency improve-

ments from median HTTP/TCP latency improvements and comparing the results, we

observed a decrease in both the HTTP and the TCP latency across all DCs, implying a

better responsiveness of, e.g., web applications. Improvements in both the DC connection

and the communication protocol latencies indicate that Microsoft is paying attention to

the latency and is evolving its Azure Cloud Computing infrastructure with latency among

its priorities.

Table 6.3: Distances and RTT lower bounds. VP–to–DC distances and RTTs the light in
the real–environment achieves.

Data Center
California Dublin

dist [km] RTT [ms] dist [km] RTT [ms]

Va
nt

ag
e

Po
in

t

Melbourne 12644 127.81 17214 174.00
Belo Horizonte 10404 105.16 8869 89.65

Prague 9395 94.96 1470 14.86
Osaka 8662 87.56 9579 96.82

Hiroshima 8844 89.40 9498 96.01
Seattle 1094 11.06 7300 73.79
Atlanta 3440 34.77 6322 63.91
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Table 6.4: Summarized RTTs. Cell rows correspond to the HTTP, TCP and ICMP (going from the top). Cell columns correspond to the median of
2013 minima, median of 2016 minima, median of 2013 medians and median of 2016 medians, respectively.

Data Center
X̃ [ms] (ρ [µs.m−1])

California Dublin
min13 min16 med13 med16 min13 min16 med13 med16

Va
nt

ag
e

Po
in

t

Melbourne
HTTP 174 (6.88) 163 (6.45) 176 (6.96) 164 (6.49) 311 (9.03) 296 (8.60) 313 (9.09) 297 (8.63)
TCP 171 (6.76) 161 (6.37) 172 (6.80) 162 (6.41) 308 (8.95) 295 (8.57) 309 (8.98) 296 (8.60)
ICMP 169 (6.68) 160 (6.33) 169 (6.68) 161 (6.37) - 294 (8.54) - 294 (8.54)

Belo Horizonte
HTTP 183 (8.79) 207 (9.95) 185 (8.89) 209 (10.04) 231 (13.02) 256 (14.43) 233 (13.14) 257 (14.49)
TCP 180 (8.65) 205 (9.85) 181 (8.70) 207 (9.95) 228 (12.85) 254 (14.32) 229 (12.91) 255 (14.38)
ICMP 178 (8.55) 204 (9.80) 179 (8.60) 206 (9.90) 227 (12.80) 254 (14.32) - 255 (14.38)

Prague
HTTP 166 (8.83) 163 (8.67) 169 (8.99) 164 (8.73) 40 (13.61) 37 (12.59) 42 (14.29) 37 (12.59)
TCP 163 (8.67) 159 (8.46) 168 (8.94) 161 (8.57) 38 (12.93) 34 (11.56) 42 (14.29) 34 (11.56)
ICMP 160 (8.52) 158 (8.41) 160 (8.52) 159 (8.46) 34 (11.56) 33 (11.22) - 34 (11.56)

Osaka (2013)
Hiroshima (2016)

HTTP 140 (8.08) 135 (7.63) 145 (8.37) 136 (7.69) 278 (14.51) 252 (13.27) 329 (17.17) 266 (14.00)
TCP 136 (7.85) 132 (7.46) 137 (7.91) 132 (7.46) 272 (14.20) 249 (13.11) 274 (14.30) 262 (13.79)
ICMP 133 (7.68) 132 (7.46) 134 (7.73) 133 (7.52) - 270 (14.21) - 271 (14.27)

Seattle (2013)
Atlanta (2016)

HTTP 24 (10.97) 54 (7.85) 28 (12.80) 54 (7.85) 160 (10.96) 99 (7.83) 228 (15.62) 99 (7.83)
TCP 21 (9.60) 51 (7.41) 23 (10.51) 51 (7.41) 155 (10.62) 97 (7.67) 157 (10.75) 97 (7.67)
ICMP 18 (8.23) 50 (7.27) 18 (8.23) 50 (7.27) 152 (10.41) 95 (7.51) - 96 (7.59)
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Tail Latency

Cloud–scale infrastructures can ignore neither the tail latency, nor the latency

variability. Our analysis revealed the presence of both in 2013 and also in 2016. The

exact sources of latency variability are hard to identify, whereas sources of tail latency

include network sources like congestion and application sources like power optimizations.

We attribute to the CSP only those observed by multiple VPs, even though it is certainly

possible for the CSP to influence a good deal of latency tail and variability introduced

outside DCs (e.g., by improving exterior routing and BGP peering at strategic IXPs).

A summary of TCP CDFs is presented in Figure 6.5. Tails show up at various

percentiles and sometimes add tens of milliseconds to about ten percent of the traffic,

which is beyond tolerance for certain classes of applications (Figure 2.5).

Australia and New Zealand VPs observed a lot of variability and, thus have

minimum and median latency CDFs apart for the most part (Figure 6.6). At Brazil and

Japan VPs, variability is observed through irregular CDF shapes.

Multimodal Distribution

A common reason for discrepancies and significant jumps in CDFs (Figure 6.5) is

multimodal distribution of latency, which negatively affects Cloud applications. Analysis

of the timeseries identified three situations that cause bimodal distribution – a persistent

increase of latency (VP–to–frontend measurements), periodic effect (frontend–to–backend

measurements) and minimum–median discrepancy (VP–to–frontend measurements).

The first two situations were described as anomalies in Subsection 6.2.2. An

example of the third situation is presented in Figure 6.6. Both the primary and secondary

VPs (hosted in Melbourne), as well as the backup VP (hosted in Auckland), observed

bimodal latency at all protocol layers when accessing Dublin DC services. As this concerns

minimum and median measurements combined, it can be viewed as a bimodal mixture

of two distributions, each having a different mode. The problem is likely on the path(s)

from Australia/New Zealand to Dublin DC, since no other VPs observed this effect (not

even on Australia/New Zealand path to California DC). Among possible causes is taking

alternative paths of different latency. Alternative path does not necessarily have more

network hops, as, in general, there is no strong correspondence of hopcount to distance or

latency [74]. That opens room for application causes such as I/O levels, GC/hypervisor

pauses, context switches, interrupts, database reindexing or cache flushes.
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(a) Minimum – California frontend
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(b) Minimum – Dublin frontend
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(c) Median – California frontend
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(d) Median – Dublin frontend

Figure 6.5: CDFs of minimum and median TCP RTTs. As measured between each (VP, DC) pair. Bimodality, tails, minor effects and discrepancies
between related supposedly–identical curves are observed. Note that US and Japan VPs were relocated between 2013 and 2016 due to PlanetLab instabilities.69
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Figure 6.6: Example of a bimodal latency distribution. Minimum and median HTTP RTTs
apart for the most part, as observed by Australia and New Zealand VPs when measuring Dublin
DC. Bimodality was observed at all protocol layers.

Availability

DC availability and its changes over time are other important metrics. Here we

consider an individual measurement successful should any of the five probes within a single

train succeed (Unanimous negative voting). The success rate than denotes the availability.

We use only backend data for availability analysis, as frontend data is heavily influenced

by PlanetLab instabilities.

The results are listed in Table 6.5. Observed are availability improvements across

all measured backends. Current availability tops the 99.9% mark for individual DCs, as

well as cumulatively for the TCP protocol layer.
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Table 6.5: Availability of Azure backend. For TCP and per DC.

Variable 2013 2016 Backend 2013 2016

tcp2db 99.37% 99.96%
California 99.74% 99.94%

Dublin 99.88% 99.95%
Singapore 99.85% 99.94%

6.2.4 Conclusion

Results in this Section provide insights into Microsoft Azure Cloud–service la-

tency and its trends over three years. Notable observations are as follows:

• Various anomalous behaviors exist that have adverse effect on Cloud–service and

application performance, often impairing user experience;

• TCP/IP protocol interbehavior is less coherent in the Cloud environment (Fig-

ure 2.8);

• Tail latency, latency variability and latency multimodality are still present on the

end–to–end Cloud paths and partly explain why Cloud is not a predictable platform

for all applications yet;

• Cloud backend displays a good availability over time, both protocol–wise and DC–

wise.

The presented insights into VP–to–DC latency are, to some extent, explicable by

the already well–researched Internet latency. Our analysis and evaluation show improve-

ments in many aspects of Cloud–service latency over time. The impact of infrastructure

improvements on the CSP side is clearly observable, most notably via the improved perfor-

mance of its core networking. More results (e.g., decrease in DC–centered global–impact

incidents) and an expert system for detection and interpretation of suspicious events are

part of the follow–up works [120, 99].

The multidimensional measurements and analyses can be utilized for improving

Cloud services and justification of offload infrastructures such as Edge Computing or

Cloudlets. The multidimensional latency analysis may also lead to better geographic

resource allocation on the side of Cloud–service tenants.

Furthermore, advanced data–mining techniques may be utilized to deepen the

insights compared to the presented simple methods of descriptive statistics. The presented

timeseries can be used to train variety of ML techniques for detection of a variety of

suspicious events based on coincidence across measurement dimensions.
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6.3 Cloud Service Benchmarking

6.3.1 Introduction

In this Section, we present the Latency–based benchmarking methodology, based

on multidimensional latency measurements. We also describe measurements preprocessing,

present a longitudinal case study and experimentally evaluate all methods using a large

open CLAudit dataset.

With CSP offerings homogenizing, competitive differentiation takes place at a ser-

vice quality level. However, CSPs reveal only insufficient amount of technical information

about their service, often leaving tenants indecisive. Using Latency–based benchmarking,

we show that there are significant differences in service quality among CSPs and even

among single–CSP’s DCs and resources therein.

Latency–based benchmarking also allows for:

• Cloud service comparisons using diverse application requirements;

• Identifying a best–fit CSP/DC for a global client base;

• Identifying a best–fit backend for a given frontend;

• Usage of in–house collected or 3rd–party data;

• Performance estimations without actual deployments;

• Updatability of the results as new measurements get collected;

• Addition to the existing benchmarking suites.

Pursuant to the benchmarking best practices, we obfuscate and randomize the

order of CSPs – Amazon AWS and Microsoft Azure. From now on, we thus use P1 and

P2 to denote our compared CSPs.
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Table 6.6: Summary of benchmarking notation.

Term Definition
S Set of measurement sources, i.e., VPs and Cloud frontends
D Set of measurement targets, i.e., Cloud frontends and Cloud backends
M Set of RTT–summary statistics
L Set of protocol layers of network communication stack
V Set of Internet Vantage Point locations
F Set of frontend–resource DC locations
B Set of backend–resource DC locations
P Set of Cloud Service Providers
x∗n RTT measurement with parameters * at n–th time instant
~v ∗m Vector of m–th summary–statistic’s values over all sources
wm Weight of summary statistic m
rd,p Benchmark score of CSP p’s DC d

6.3.2 Data Preprocessing

We have used Dataset4 (Table 6.1) for the purpose of Latency–based benchmark-

ing design and experimentation. As per terminology in Chapter 4, a monitoring dataset

X consists of timeseries ~x that contain N single multidimensional RTT measurements

xn, where every successive k measurements belong to a probe train captured around a

common time instant. By considering only median measurement (3rd highest RTT of a

sorted probe train of size k = 5) and VP designation q = primary, a measurement xn is

described as follows:

XL,V,F,B,P = {xl,v,f,b,pn }, n ∈ [1, 2, . . . , N ] (6.2)

The notation used in this Section is summarized in Table 6.6.

The actual recorded latency values (visualized in Figures 6.7a and 6.7b) largely

correspond to geographical distances between the sites, resulting in varying scale that

makes any immediate comparisons difficult. We thus normalize the values to a new stan-

dard range. Two approaches are feasible for selection of the baseline used for normalization

of raw measurements:

Normalization via optimal–latency approximation

This approach normalizes RTTs using an approximation of the optimal signal

propagation latency between the measurement source and destination. Path length is

approximated by the Great–circle distance (GCD). It then gets divided by the speed of

73



Chapter 6. Applications

light in fiber. The optimal RTT is twice the resulting one–way latency:

RTToptimal(src, dest) = 2.gcd(src, dest)
cfiber

(6.3)

There are two downsides to this normalization. First, it might prioritize long

distances over short ones. In the case of long distances, fiber is usually employed (e.g.,

transoceanic submarine cables with few hops), as opposed to short distances, where copper

is common and relative number of network hops is higher. This might result in bias.

Second, based on different experiments, resulting values are poorly normalized

(mainly clustered around 150%, 170%, and 190% of the ideal value), which is not suitable

for further analysis. We thus refrained from normalizing using an optimal propagation

latency.

Normalization via minimum RTT

This approach normalizes the values to a new standard range using minimum

RTT, i.e., a minimum measured latency across all CSPs (Figure 6.7b):

xl,v,f,bmin = min
n,p
{xl,v,f,b,pn }, n ∈ [1, 2, . . . , N ] , p ∈ P (6.4)

This normalization yields highly–clustered measurements with different positions

of central points across CSPs, locations and even protocol layers (Figure 6.7c). However,

for the purpose of subsequent benchmarking calculations, the values need to be spread

out such that the large latency values represent one end of the interval and small values

the other end.

The square root transformation has the desired properties [101], as shown using

transformation outcome in Figure 6.7d. This transformation changes the distribution of

measurements, but, when applied consistently, does not affect validity of the methodology.

The entire formula, selected for measurement preprocessing, is as follows:

x̂ l,v,f,b,pn =

√√√√1− xl,v,f,bmin

x l,v,f,b,pn

, n ∈ [1, 2, . . . , N ] (6.5)

Measurements are now spread out across the standard [0, 1] range. Subtraction

from 1 is to retain the logical order, where the minimum becomes 0 and outliers appear

at the other end of the range. The latency values are now comparable across locations.
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(a) Unscaled view of raw measurements (b) Scaled and trimmed view of raw measurements

(c) Normalized measurements (d) Transformed measurements

(e) P1 – Normalized (f) P2 – Normalized (g) P1 – Transformed (h) P2 – Transformed

Figure 6.7: Measurement preprocessing for Latency–based benchmarking. Values get normalized using minimum recorded value xmin and
transformed using square root, as shown in respective steps (a–d) and resulting histograms (e–h). This example shows RTTs of SQL request–response
interactions between Dublin DC frontend server and Tokyo DC backend server of both CSPs (P1 and P2), as recorded over 10 weeks.

75



Chapter 6. Applications

6.3.3 Benchmarking Procedure

The goal of benchmarking is to report how well different systems perform under

the given constraints. In practice, benchmarks are used to guide decisions about the most

economical provisioning strategy or to gain insights into performance bottlenecks [63].

The specific usage of benchmarking is dictated by concrete use cases such as financial

trading or instant messaging. Whereas the former mandates very low latency with no

tails, the latter allows for arbitrary high and volatile latency below a certain physiological

threshold. Such requirements can be expressed via metrics, which are used throughout

our benchmarking process (summarized in Figure 6.8).

Using notation from Table 6.6, measurements for benchmarking are obtained

between measurement sources s ∈ S and a destinations d ∈ D. s and d can both be any

of the v ∈ V, f ∈ F or b ∈ B (i.e., benchmarking works both upstream and downstream).

However, not all combinations are valid, as VPs cannot directly access backend resources.

This Section considers only upstream benchmarking (i.e., d is a CSP resource f or b).

Selection of metrics

Given the sources, destinations and transformed measurements with desired char-

acteristics, we can calculate the metric value. Metric m ∈ M expresses a latency–related

application requirements such as low or stable latency. Arbitrary set of metrics M can
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Figure 6.8: Procedure to transform raw measurements into CSP rank.

76



6.3. Cloud Service Benchmarking

be composed, to reflect composite application requirements well. In this Section, we use

descriptive–statistics metrics [70]. The following two examples show mean and standard

deviation metric, used to express requirements related to latency average and variability:

X
l,v,f,b,p = 1

N

N∑
n=1

x̂ l,v,f,b,pn (6.6)

X l,v,f,b,p
std =

√√√√ 1
N − 1

N∑
n=1

(x̂ l,v,f,b,pn −X l,v,f,b,p)
2

(6.7)

Metric vectors

Given |M | metrics of interest, we create a set of |M | · |P | · |L| vectors ~v in a

|S|–dimensional space, where |S| is a number of measurement sources s (Figure 6.9 gives

an example).

Vector components are metric values, calculated between source location si and

CSP p’s destination d using protocol l:

~v l,d,p
X

= (X l,d,p,s1 , X
l,d,p,s2 , . . . , X

l,d,p,s|S|) (6.8)

Here we calculated a vector consisting of |S| means of latency at protocol layer l

between |S| sources and CSP p’s destination d.

A magnitude of such vector, calculated as Euclidean norm, summarizes the per-

formance under the selected metric over all measurement source locations S:

‖~v l,d,p
X
‖ =

√
(X l,d,p,s1)2 + (X l,d,p,s2)2 + · · ·+ (X l,d,p,s|S|)2 (6.9)

The metrics, under which CSP performs well, have a vector magnitude close

to zero. This also occurs in the case of co–located resources, where latency often ap-

proaches 0 ms (e.g., frontend and backend in the same DC). Thus, co–located deployment

usually dominates the comparison, which is desirable.

Note that an outstanding source does not influence the resulting CSP ranking, as

it hurts all CSPs to the same extent. Thus, there is no need to limit the set of considered

sources based on the actual geographic relevance.
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Figure 6.9: Example metric vectors of CSPs P1 and P2 in a 3–dimensional space.
Means of HTTP latency measurements of similarly–located Virginia DCs from 3 VPs (Australia,
USA, Japan) were used. The magnitude of P1’s vector is smaller and, as per our methodology,
benchmarking favors P1 in the subsequent comparisons.

Protocol layer aggregation

As the benchmarked application is usually built on top of the standard network

protocol stack, different protocol layers take turns in issuing round trips between applica-

tion endpoints. As such, every involved protocol l ∈ L needs to perform well (Figure 2.8).

To reflect this, we aggregate magnitudes of the per–protocol–layer vectors using the fol-

lowing multiplication, which ensures that all involved protocols perform well:

‖~v d,pm ‖ =
∏
l∈L
‖~v l,d,pm ‖ (6.10)

This approach can be extended to prioritize or penalize some layers, which certain

use cases may require.

Metric weighting

Depending on tenant’s and application’s needs, some metrics may be of a higher

priority than others. Weight wm ∈ [1, . . . ,MAX] is proportional to the m–th metric’s

influence on application performance, i.e., weight 1 is assigned to a metric that stands
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for application requirement, which, if not satisfied, does not impact performance signif-

icantly; and weight MAX is assigned to a metric having a strong impact. Given |M |

metrics of interest, the |M | weights wm ∈ [1, . . . ,MAX],m ∈ [1, 2, . . . , |M |] are created

and normalized as:

ŵm = wm∑|M |
m=1wi

(6.11)

CSP ranking

Finally, CSPs are scored by a following weighted sum of vector magnitudes:

rd,p = ŵ1‖~v d,pm1‖+ ŵ2‖~v d,pm2‖+ · · ·+ ŵ|M |‖~v
d,p
m|M |‖ (6.12)

The recommended CSPs are then the ones with low–ranked scores:

rd,p1 ≤ rd,p2 ≤ · · · ≤ rd,pp (6.13)

6.3.4 Performance Evaluation

This Subsection discusses an example case study of a hypothetical tenant that

wants to migrate an application to the public Cloud environment. The application is

a latency–sensitive TCP/HTTP web container serving only static webpages (previously

used in [86]). The tenant considers Virginia locations of the public CSPs P1 and P2 for

deployment. The nature of the application requires low–to–moderate latency, preferably

stable, in a sense of the following weights: median = 5 = MAX, standard deviation = 1,

coefficient of variation = 1.

Figure 6.10 shows the input HTTP measurements and Figure 6.11 the input

TCP measurements. After normalization and transformation, benchmarking proceeds

according to the steps described in Figure 6.8. Table 6.7 calculates magnitudes of the

metric vectors. P2 has over 30% lower median magnitude for both involved protocols,

Table 6.7: Calculated metric–vector magnitudes ‖~v‖.

CSP protocol med std CV
P1 HTTP 0.771 0.123 0.303

TCP 0.998 0.093 0.231
P2 HTTP 0.518 0.195 0.773

TCP 0.727 0.131 0.836
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(a) HTTP (AustraliaVP) (b) HTTP (Czech VP)

(c) HTTP (Japan VP) (d) HTTP (US VP)

Figure 6.10: Case study input data – HTTP RTTs to Virginia DC as observed by four
VPs. CSP P2’s DC displays a lower median latency and CSP P1’s DC a more–stable latency,
according to observations of the majority of VPs. These observations are quantified and aggregated
during the stages of benchmarking process.

(a) TCP (AustraliaVP) (b) TCP (Czech VP)

(c) TCP (Japan VP) (d) TCP (US VP)

Figure 6.11: Case study input data – TCP RTTs to Virginia DC as observed by four
VPs. CSP P2’s DC displays a lower median latency and CSP P1’s DC a more–stable latency,
according to observations of the majority of VPs. These observations are quantified and aggregated
during the stages of benchmarking process.
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Table 6.8: Calculated CSP score. P2 is the recommended CSP.

CSP rVirginia

P1 0.56
P2 0.36

indicating that it provides lower latency across the communication protocol stack. In the

case of both standard deviation and the coefficient of variance, P1 scored notably better

and, as such, is deemed to provide more stable latency. We can visually compare the

corresponding vectors in a 4–dimensional vector space, analogous to Figure 6.9.

Next, we aggregate both layers via multiplication and calculate the weighted sum

using the following weights:

ŵmed = 5
7 , ŵstd = 1

7 , ŵCV = 1
7 (6.14)

The weights reflect the primary need for low latency and the secondary need for

stable latency. Weights are plugged into the weighted sum formula:

rVirginia,p = ŵmed‖~vVirginia,p
med ‖+ ŵstd‖~vVirginia,p

std ‖+ ŵCV ‖~vVirginia,p
CV ‖ (6.15)

Table 6.8 shows that CSP P2 is recommended for hosting the latency-sensitive

web application in Virginia. Importantly, CSP P2 had a sufficiently lower latency and thus

scored better overall, despite the more stable–latency at CSP P1. In Figures 6.10 and 6.11,

a lower median latency at P2 can be observed through tens of milliseconds difference at

all VPs. Higher latency–stability at P1 is caused mainly by Australia and Czech VP’s

observations at both layers. In contrast, Japan VP experienced a higher stability at P2.

US VP’s observations were least significant, owing to a physical proximity of this VP to

the DCs considered.

Weights are important for Latency–based benchmarking. In the case of Virginia,

the measurements alone yield the opposite result – by setting all weights to 1, P1’s score

becomes 0.85 and P2’s score becomes 1.05. Requirements–agnostic benchmarking would

thus place the application to the environment suboptimal for its operation. This demon-

strates the importance of considering application needs when benchmarking CSPs.
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Figure 6.12: Error function of benchmarked CSP’s score with growing dataset. Our
case study indicates that at least 3–6 weeks of measurements are recommended for the accurate
Latency–based benchmarking.

6.3.5 Amount of measurements

The amount of measurements needed for accurate CSP benchmarking depends

on the particular CSP’s stability. Figure 6.12 shows changing error in CSP scores with

growing amount of the measurements. The error was ≤ 4.1% at 3 weeks and ≤ 2.2%

at 6 weeks of measurements. In general, stabilization may not arise even with a greater

amount of measurements – due to changing DC and network conditions. That said, our

long–term measurements of major public CSPs indicate that an amount of measurements

smaller than 3 weeks is insufficient due to week–of–month and day–of–week distortions.

6.3.6 Measurements summary

As an overview of the major public CSP–latency behavior, Tables 6.9 and 6.10

show a summary of computed magnitudes of various metric vectors for the entire CLAudit

prototype deployment (Subsection 5.3.3). Table 6.9 shows the biggest differences in both

mean and median frontend latency between the CSPs are at the US DCs. The highest

latency variance and biggest deviations were observed at Singapore DC, again with a big

relative difference between the CSPs (over 50% in the case of TCP latency variance). P2

has also an excess variance of HTTP latency at Virginia DC.
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Table 6.9: Summary of vector magnitudes for HTTP–based frontends. Included are
Mean, Median, Variance and Standard deviation.

Frontend DC location
California Dublin Singapore Virginia
P1 P2 P1 P2 P1 P2 P1 P2

M
et

ric

Mean HTTP 0.823 0.556 0.544 0.684 0.689 0.634 0.780 0.562
TCP 0.853 0.514 0.545 0.590 0.718 0.596 0.998 0.736

Median HTTP 0.809 0.531 0.511 0.668 0.693 0.604 0.771 0.518
TCP 0.842 0.491 0.564 0.585 0.723 0.571 0.998 0.727

Variance HTTP 0.009 0.014 0.013 0.008 0.023 0.031 0.008 0.024
TCP 0.009 0.013 0.014 0.008 0.016 0.033 0.005 0.011

Deviation HTTP 0.127 0.155 0.148 0.125 0.201 0.230 0.123 0.195
TCP 0.126 0.143 0.152 0.124 0.171 0.239 0.093 0.131

Table 6.10: Summary of vector magnitudes for SQL–based backends. Included are Mean,
Median, Variance and Standard deviation.

Backend DC location
California Dublin Singapore Tokyo
P1 P2 P1 P2 P1 P2 P1 P2

M
et

ric

Mean SQL 1.130 1.015 1.106 1.272 0.422 0.677 0.447 0.513
TCP 0.653 0.768 1.114 1.301 0.858 0.986 0.488 0.640

Median SQL 1.136 1.018 1.107 1.258 0.347 0.680 0.429 0.534
TCP 0.551 0.997 1.114 1.299 0.797 1.149 0.450 0.636

Variance SQL 0.014 0.012 0.033 0.003 0.039 0.049 0.011 0.023
TCP 0.153 0.169 0.035 0.007 0.026 0.154 0.013 0.020

Deviation SQL 0.140 0.140 0.233 0.066 0.252 0.242 0.136 0.167
TCP 0.414 0.447 0.245 0.097 0.205 0.408 0.153 0.174
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Backend results (Table 6.10) are heavily influenced by the DC and inter–DC

network design. Big differences in latency deviation and variance between the CSPs were

observed at Dublin DC (TCP and SQL latency) and Singapore DC (TCP latency). There

was also a big disagreement between SQL and TCP average latency and also the latency

variability at California DCs of both CSPs.

The magnitudes, listed in the two Tables, allow to assign arbitrary weights to

metrics and observe changing results of benchmarking. Or to benchmark an application

with multiple frontends or backends distributed across DCs and locate clients that such

deployment serves best.

6.3.7 Conclusion

In this Section, we presented a methodology for, and a practical example of,

Cloud–service benchmarking using multidimensional latency measurements. No similar

longitudinal latency–based benchmarking methodologies exist at the moment, unfortu-

nately preventing a comparison.

To make comparisons of future benchmarking methodologies easier, additional

normalizations in later stages of the benchmarking process can confine the vectors and

comparisons to the n–dimensional cube of a unit size.

This practical study clearly shows that selecting the best fitting CSP is not

straightforward and detailed application QoS requirements must be known a priori to

obtain a clear picture, as different Cloud services outperform others in different aspects

or deployment locations.

The possible applicability of such benchmarking methodology is widespread: se-

lecting a CSP, monitoring its performance, determining a workload split among CSPs

including real–time adjustments, or serving as input to dynamic auctioning or pricing of

Cloud services.

Clearly, an improvement of the methodology is possible – for example by integrat-

ing other measurable parameters such as throughput, computation or storage performance,

or by evaluating more sophisticated applications. Furthermore, despite the practical ap-

plication demonstrated, a more elaborate test, considering price differences and evaluating

the benefit of having selected a particular deployment based on a benchmarking recom-

mendation, would be needed to fully confirm applicability of this methodology.
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6.4 Cloud Connectivity Optimization

6.4.1 Introduction

In this Section, we present a Cloud–connectivity optimization scheme, formalized

as a binary Mixed–Integer Linear Program (MILP). The scheme, to be deployed on gate-

way middleware, leverages available network information and models Cloud status through

statistical measures of latency, throughput and traffic costs. These then guide dynamic

Cloud–bound traffic assignments. In turn, adverse network effects on packets traversing a

home boundary are minimized by leveraging up–to–date information about performance

variations of candidate DC connections. Our scheme exhibits the following benefits:

◦ mitigates impact of Internet–path and Cloud outages;

◦ diverts traffic from degraded DCs;

◦ reduces adverse network effects on existing connections;

◦ precalculates assignment of future Cloud connections.

We demonstrate that such optimization could bring significant benefits in terms of quality

and reliability of the Cloud service to individual users. We add to the state–of–the–art

a solution that operates at the network edge, uses readily–available data, is preemptive,

avoids vendor lock–in, allows for triggered or periodic execution and operates at a sub–

request granularity while considering both upstream and downstream path performance.

We evaluate the scheme merits by 70–day simulation – using two common scenarios and a

typical application mix, hosted in five representative locations worldwide and serviced by

eight globally–deployed DCs of two major public CSPs – Amazon and Microsoft (from now

on referred to as using randomized order and obfuscated names – P1 and P2). Our small–

scale evaluation using smart homes confirms that adverse network effects are reduced and

outages, as well as poorly–performing DCs on the Cloud end are avoided – for the benefit

of smart–home users, Cloud tenants and CSPs. To take full advantage of the scheme in

larger deployments, practical implementation concerns have to be addressed and a good

latency–prediction model has to be used. Our main contributions are:

◦ A proposed traffic–assignment optimization scheme;

◦ An experimental evaluation over a large open dataset;

◦ A discussion of practical implementation.
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Figure 6.13: Smart–home system outline. Smart–home gateway observes the status of can-
didate Cloud DCs and, optionally, the needs of smart–home devices (both denoted by solid arrows).
This information is then used for mitigating impact of Cloud outages and degradations, as well
as for periodic or triggered assignment–optimization of existing and future smart–home sessions
interacting with Cloud services (denoted by double–dashed and square–dot arrows).

6.4.2 Model and Optimization

The system of interest, outlined in Figure 6.13, consists of smart–home de-

vices that run applications, which interact with Cloud services over the network via a

smart–home gateway. Smart–home applications can be classified according to relationship

to adverse network conditions, i.e., applications can be latency–sensitive (realtime con-

trol), jitter–sensitive (gaming), loss–sensitive (video on demand) or throughput–intensive

(streaming). To capture this diversity, we model the needs of a set of smart–home appli-

cation sessions I that interact with Cloud services. Sessions I are described by data rates

R, average packet sizes P (in both upload and download directions M) and by sensitivity

W to adverse network conditions. We also consider a monetary budget b to control Cloud

traffic costs. Table 6.11 summarizes the notation.

We then describe a set of candidate Cloud DCs J using their properties, as visible

to the smart home. DCs J are described by download and upload throughputs T ; cost

of download traffic c and |K| = 3 representative measures of adverse latency conditions:
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Table 6.11: Summary of optimization notation.

Term Definition
I Set of smart–home sessions
J Set of candidate DCs
N Length of RTT timeseries
K Set of adverse network effects: τ , µ and σ
M Set of traffic directions: upload and download
xj,n RTT measurement of j–th DC at n–th time instant
ri,m Data rate of session i in direction m
pi,m Average packet size of session i in direction m
wi,k Sensitivity of i–th session to k–th adverse effect
b Remaining financial budget for Cloud traffic
cj Downstream traffic costs at j–th DC
tj,m Throughput of j–th DC in direction m
aj,k Size of k–th adverse network effect at j–th DC
si,j Traffic fraction of i–th session, assigned to j–th DC
s′i,j Previous traffic fraction of i–th session to j–th DC
f Objective function – cumulative adverse network effect

timeout rate τ , latency mean µ and standard deviation σ (see examples in Figure 6.14).

These three can be conveniently derived from the j–th DC’s RTT timeseries ~xj of length

N , obtained by probing conducted by smart–home gateway itself or pulled from a 3rd–

party service. µ and σ are calculated using timeseries normalized and transformed across

all DCs (Equation 6.16). That is to unify range and to reduce bias induced by varying

distances between smart homes and candidate DCs.

x̂j,n =
√

1− min{xj,n}
xj,n

, n = 1 . . . N, ∀j ∈ J (6.16)

τ is transformed using a square root operation, as it tends to be highly clustered

(Equation 6.17). For convenience, τ , µ and σ are organized as columns of matrix A

(Equation 6.17, 6.18 and 6.19).

τj = aj,τ =

√
#timeouts(~xj)

N
, ∀j ∈ J (6.17)

µj = aj,µ = 1
N

∑
∀n
x̂j,n, ∀j ∈ J (6.18)

σj = aj,σ =
√

1
N − 1

∑
∀n
|x̂j,n − µj |2, ∀j ∈ J (6.19)
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Figure 6.14: Example of adverse network effects. Derived from j–th DC’s RTT timeseries
~xj are timeout rate τj, latency mean µj and standard deviation σj that represent the ever–present
adverse network effects whose optimal combination across a set of candidate DCs J is sought.

Given the smart–home and Cloud models, we formulate the optimization task as

a binary MILP (Objective function 6.20). The goal of the Objective function f is to min-

imize cumulative adverse network effect (i.e., amount of latency, deviation and timeouts)

on packets traversing a home network boundary. The optimized variable si,j represents

session i’s traffic fraction, assigned to DC j. Constraints ensure that only DCs capa-

ble of serving respective sessions are considered (Constraint 6.23), selected sessions do

not undergo optimization (i.e., are not steered or split – Constraints 6.24 and 6.25), DC

throughputs are sufficient (Constraints 6.26 and 6.27) and remaining budget is sufficient

(Constraint 6.28). The said constraints can be relaxed depending on information availabil-

ity. Note that the Objective function consists of only RTT–derived metrics and is unitless,

since it contains one ratio and two normalized quantities. DC–upstream and downstream

throughputs and traffic costs are modeled as constraints – as such, they restrict the solu-

tion space and thus affect the optimal DC selection. We refrained from adding these to

the Objective function due to their incomparable units ($, kbps).

In the worst case, presence of Constraints 6.25 changes the problem complexity

from P to NP–hard. In that case, a practical program computation is thinkable only for

up to our considered deployment scales, e.g., a network with a moderate number of Cloud–

bound sessions I and several candidate DCs J . In such case the program computation is

feasible using conventional solvers.
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argmin
s∈R

f(s) = argmin
s∈R

∑
∀i

∑
∀j

∑
∀k

∑
∀m

wi,kaj,k
ri,msi,j
pi,m

(6.20)

subject to

si,j ≥ 0, ∀i ∈ I, ∀j ∈ J (6.21)

∑
∀j
si,j = 1, ∀i ∈ I (6.22)

si,j = 0, ∀(i, j) : j incapable of serving i (6.23)

si,j = s′i,j , ∀i : i cannot be steered, ∀j ∈ J (6.24)

si,j ∈ {0, 1}, ∀i : i cannot be split, ∀j ∈ J (6.25)

∑
∀i
si,jri,m ≤ tj,m, ∀j ∈ J, m = download (6.26)

∑
∀i
si,jri,m ≤ tj,m, ∀j ∈ J, m = upload (6.27)

∑
∀i

∑
∀j
si,jri,mcj ≤ b, m = download (6.28)

The program computation is preemptive in that it reassigns sessions capable of

being reassigned throughout their duration. It is either periodic (according to a configured

timer) or triggered by a significant change in Cloud status or smart–home needs. The entire

optimization scheme is outlined in Figure 6.15. An example of the optimization–scheme

behavior around a period of DC degradation is depicted in Figure 6.16.
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Figure 6.15: Information flow within a smart–home gateway. Cloud status information
comes from gateway’s own active probing or optional 3rd–party sources. An optional information
about smart–home session needs comes from monitoring the home area network (HAN) activity.
Optimization–task’s execution can be either periodic or triggered by a significant change in HAN
or Cloud status. New HAN sessions can be classified and, in turn, suitably pre–assigned to serving
DCs. The optional modules and flows, unnecessary for the general idea to work, are denoted using
dashed boxes and arrows.
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Figure 6.16: Optimization–scheme behavior. The scheme observes preferred–DC’s degrading
status and, after a short delay, reacts by offloading sessions to a momentarily best–performing and
suitable DC. Sessions are assigned back after the preferred–DC’s status is restored. On Day 69,
all six sessions were taken away of P1’s DC for the period of about seven hours of excess RTTs.
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6.4.3 Performance Evaluation

We have used Dataset4 (Table 6.1) for evaluation of our proposed optimiza-

tion scheme, since, VP sites therein correspond well with the current global IoT deploy-

ment (Figure 6.17). We thus emulate the smart–home perspective using PlanetLab hosts.

Cloud–service instances are emulated using the actual frontend–server deployment inside

four common DC locations of P2 and P1. Every smart home periodically measures TCP

RTT to the eight candidate DC service instances. Recent parts of resulting timeseries

~xj are periodically preprocessed (normalized, transformed and summarized, according to

Equations 6.16–6.19). We have experimented with various simple prediction models that

consider various amounts of history, such as low–pass filter, but the most recent parts of

the timeseries turned out to be the best predictor (likely due to irregularity of the Internet

and Cloud latency distributions). Period N = 8 minutes minimized the prediction error

over Dataset4.

The predicted status of candidate DCs is fed to the optimization task (Func-

tion 6.20) that evaluates it against smart–home session needs and periodically (here every

8 minutes) suggests optimal session assignments.

Figure 6.17: IoT heatmap [31]. Concentration of smart devices is largest in US and Europe.
Note that some countries provide limited visibility and thus skew accuracy of this Figure.
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The simulated smart–home application mix (described in Table 6.12) consists of

six applications: web camera, VoIP phone, HDTV, over–the–air (OTA) device update,

large file download and interactive home–control application. Every application has a

representative usage pattern that ignores daylight savings and weekends. This usage

pattern is neither known to, nor predicted by our optimization scheme. The application

mix represents various sensitivities to timeout rate, latency and latency deviations, which

are reflected in the custom–sensitivities simulation scenario w′. We have also conducted

a simulation scenario of default sensitivities w′′, under which applications do not express

any sensitivity. To discern the influence of adverse network effects, we do not constrain

the solution search space – by setting negligible traffic costs ~c , large throughputs T and

large budget b. We also assume that any DC j can serve any session i.

In the rest of this Section, we quantify the optimization merits by contrasting

performance of the optimization scheme with performance of an empirically–derived most

preferred DC for every smart home. A preferred DC is defined as the DC receiving the

largest traffic share from the smart home under the default–sensitivities w′′ scenario over

the 70 days (it often turns out to be one of the closest DCs to a smart home). The

preferred DCs are: P2’s Virginia DC for the Belo Horizonte and the Atlanta smart homes;

P2’s Singapore DC for the Hiroshima smart home; P1’s Dublin DC for the Prague smart

home and P1’s Singapore DC for the Melbourne smart home.

Merits on Datacenter end

Mitigating impact of Internet–path outages, Cloud outages and degraded DCs

reduces number of helpdesk calls, technician visits and SLA violations. The optimization

scheme achieves so by observing failed or degraded network conditions and subsequently

updating an assignment. Smart home thus avoids experiencing many outages and degra-

dations (as shown using performance against ground truth – Table 6.13), which could

otherwise render smart devices unusable or unsafe. From a perspective of CSP, gate-

ways naturally divert traffic to a different DC, since degraded network conditions, once

observed, are less prone to be selected by the optimization task.

We define u–th DC’s outage (Formula 6.29) as a period of 100% timeout rate

observed by smart home. To rule out smart–home outages as a cause, the smart home

simultaneously has to see at least one other candidate DC online.
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Table 6.12: Smart–home application mix and two latency–sensitivity simulation scenarios.

Need Webcam VoIP phone HDTV OTA device update Large download Home control
ri,download 1kbps 87kbps 4.5Mbps 216kbps 5Mbps 128kbps
ri,upload 256kbps 87kbps 1kbps 1kbps 1kbps 128kbps
pi,download 256B 218B 1500B 1500B 1500B 128B
pi,upload 256B 218B 1500B 1500B 1500B 128B

Can be split Yes No Yes Yes Yes No
Can be steered Yes No Yes Yes Yes No

Usage pattern always–on 30 minutes every 1 hour mornings, 30 minutes 6 hours 10 minutes
other daytime hour 5 hours evenings once a week evenings every 4 hours

Custom sensitivities
w′i,τ 1 10 1 100 1 100
w′i,µ 10 100 10 1 1 100
w′i,σ 10 100 10 1 1 1

Default sensitivities
w′′i,τ 1 1 1 1 1 1
w′′i,µ 1 1 1 1 1 1
w′′i,σ 1 1 1 1 1 1
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τu = 1 ∧ ∃v ∈ J : τv < 1 ∧ u 6= v (6.29)

We define j–th DC’s degradation (Formula 6.30) as a period of over 25% timeout

rate, abnormally high mean latency or abnormally high standard deviation of latency.

(τj > 0.5 ∧ τj < 1) ∨ µj > 0.5 ∨ σj > 0.5 (6.30)

Due to the normalization (Equation 6.16), the 0.5 abnormality threshold of µ

and σ does not correspond to a single fixed value. But it guarantees a sufficiently high

value, since, for every smart home, we evaluate only its preferred DC, which, under normal

conditions, is expected to have µ ≈ 0 and σ ≈ 0. The timeout rate τ = 0.5 abnormality

threshold directly corresponds to a 25% timeout rate.

During the 70 days, according to the above definitions of outage and degradation,

the five smart homes observed a total of 35.3 hours of outage (mostly Belo Horizonte),

of which 8.7 hours were observed on connections to smart–homes’ preferred DCs. Also

observed on preferred connections were 65.5 hours of degradation. The optimization–

scheme behavior in the presence of outage and degradation is validated in Table 6.13,

from which we can see that the scheme was doing a good job averting packets from all

problematic DCs.

Table 6.13: Scheme validation. Percentage of averted packets and ratio between decisions
actually made and decisions that could have been made to avert session from a problematic DC.
The upper bounds on averted packets and avert decisions were derived from the Dataset4 according
to Formulas 6.29 and 6.30.

Outage period Degradation period
Problematic

W
Averted Avert Averted Avert

DC packets decisions packets decisions
P2 w′ 99.99% 3/6 61.32% 17/42

Singapore w′′ 99.99% 3/6 61.32% 16/42
P1 w′ – 0/0 85.3% 510/564

Singapore w′′ – 0/0 85.64% 519/564
P2 w′ 83.87% 310/378 72.16% 1455/1950

Virginia w′′ 84.16% 339/378 72.62% 1589/1950
P1 w′ 99.99% 5/6 74.51% 345/390

Dublin w′′ 99.99% 6/6 74.92% 354/390
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Merits on Smart–home end

We use Relative change of Cumulative deltas of f to demonstrate improvement

potential inside a smart home – i.e., how much can a smart home benefit from leveraging

eight DCs, contrasted to using just a single most–preferred DC. Table 6.14 shows an upper

bound of such improvement, i.e., an improvement by the optimization scheme that uses

perfectly predicted Cloud latency timeseries ~xj as an input. In Table 6.14, we also break

the improvement potential down to improvements and sacrifices made in its respective

τ , µ and σ components (e.g., Atlanta, compared to relying only on its preferred DC,

has avoided all timeouts and its packets accumulated 8.7%–less latency and 3.2%–less

latency deviation under custom–sensitivities scenario w′). The improvement potential’s

upper bound is calculated in the context of our scheme and our application mix. The

improvement potential comes from traffic splitting and steering among momentarily well–

performing DCs, contrasted with using a fixed service instance from a smart–home vendor.

Table 6.14 also shows the magnitude of optimization’s potential. It is high at

distant and poorly–connected smart homes (Hiroshima, Melbourne), but low in the case of

close proximity of smart home to DC (Atlanta). The lower–than–expected improvement

potentials at Belo Horizonte and Prague smart homes are mainly caused by frequent

tradeoff decisions (also reflected through DC traffic shares in Figure 6.18). In both w′ and

w′′ scenarios, the optimization scheme in Prague and Belo Horizonte sacrificed a small

amount of mean latency µ (i.e., sometimes decided against a DC with lower latency) in

order to significantly improve timeout rate τ and standard deviation σ. As a consequence,

such smart homes with lower improvement potential tend to use many DCs.

Table 6.14: 70–day improvement potential of cumulative adverse network effect. Along
with changes in its τ , µ and σ components. ∞ denotes full elimination.

Smart home W
improvement potential

∀k k = τ k = µ k = σ

Atlanta w′ 5.6% ∞ 8.7% 3.2%
w′′ 5.6% ∞ 10.2% 2.1%

Hiroshima w′ 37.7% ∞ 18.9% 69.6%
w′′ 39.6% ∞ 18.3% 75.7%

Melbourne w′ 42.1% ∞ 81.8% 3.8%
w′′ 36.3% ∞ 74.4% -0.5%

Belo Horizonte w′ 15.7% 71.1% -6.7% 66.1%
w′′ 18.7% 91.2% -6.8% 63.5%

Prague w′ 11.9% 571.6% -2.6% 26.3%
w′′ 11.6% 689.2% -3.8% 26.5%
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Figure 6.18: DC traffic shares per smart home. After optimization, respective pie charts
reflect 70–day cumulative shares of traffic for which the smart home has selected a particular DC
under the default–sensitivities scenario w′′. The optimization scheme’s improvement potential is
highest there where only few DC switchings occur (Melbourne, Hiroshima). Long distance, poor
connectivity or need to frequently balance adverse effect tradeoffs is reflected by excess DC switching
(Belo Horizonte, Prague).

Both the custom–sensitivities w′ and the default–sensitivities w′′ simulation sce-

nario (see Table 6.12) yielded similar results, suggesting low significance of sensitivities

W for optimization of active (i.e., in progress) sessions. However, another use of the opti-

mization scheme is to precalculate splits and assignments of future Cloud–bound sessions,

since, as a secondary product, the optimization task yields currently–optimal assignments

of active–application categories (i.e., combinations of session needs P,R and W ). Once a

new session requests a Cloud service, it gets classified and is then assigned according to

the last known assignment corresponding to its category, as shown in Figure 6.15. This

avoids suboptimal initial assignment.

6.4.4 Implementation

A convenient place for implementation of the optimization scheme (shown in

Figure 6.15) is smart–home gateway, which is well–positioned to monitor and reconcile

smart–home needs with the Cloud status. This Subsection describes a näıve implemen-

tation of running the optimization scheme and related modules inside the gateway’s ap-

plication plane. Due to the resource–intensive nature of optimal–assignment calculation
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Figure 6.19: Full–fledged implementation using conventional router architecture. Op-
timization scheme and related modules reside inside application plane. Modules and other sources
feed their collected information into the scheme, which populates NAT table with Cloud service IP
addresses and TCP/IP ports, according to which the router rewrites headers of Cloud bound traffic.

and packet–header rewriting, a DNS–based implementation, mentioned at the end of this

Subsection, can be used instead, to relieve the header–rewriting burden and preserve the

End–to–end principle.

The optimization scheme can be implemented as a module inside the application

plane of a conventional router architecture. So, too, can optional modules for gateway’s

own Cloud–RTT measurements or for Cloud–status information collection from 3rd–party

sources. This full–fledged architecture is shown in Figure 6.19. The modules feed their

Cloud–status information into the optimization scheme and the gateway itself monitors

and profiles transit smart–home traffic for additional information for the optimization

scheme. The calculated optimal–session assignments are materialized through DC service

IP addresses and TCP/UDP ports, which flow into NAT table within gateway’s data

plane. Gateway operates in the NAT overload mode and continuously translates Cloud

addresses and ports within inbound and outbound Cloud traffic (this implementation is

applicable only to environments with sparse end–to–end traffic matrix). The optimization

granularity is at the application session level, which can be conveniently represented using

the flow 5–tuple (Source IP, Destination IP, Source Port, Destination Port, Protocol). To

foster quality and interoperability of assignment decisions we envision gateway signaling

97



Chapter 6. Applications

towards smart home, service CSPs and external SDN controllers.

The list of candidate DCs comes from 3rd–party sources, CSP signaling or is

preconfigured. Cloud RTTs can be obtained using gateway’s own probing, as latency

measurements are lightweight. Cloud throughput, traffic costs and even RTTs can be

obtained through CSPs dashboards [7, 3], monitors [10, 117], benchmarks [86, 124] or

SLAs. Smart–home session sensitivities and capabilities of being split or steered can be

conveyed using currently unused packet fields like ToS, IP options or a novel signaling

protocol. These sensitivities and capabilities are to be determined by application maker

or user. Average packet sizes or data rates are derived from traffic passing through the

gateway. Some information can also be inferred from household usage patterns, possibly

using Machine Learning. In the case when information about smart–home needs is not

available, defaults are used. In the case when even Cloud status information is not avail-

able, optimization can fall back to a normal (no splitting, no steering) router forwarding.

Particular sessions not to be optimized (such as CDN or cache queries) are handled by

the model – using a combination of Constraints 6.24 and 6.25.

Heavy hitters or overly–sensitive sessions can trigger an optimization run and

benefit from more up–to–date assignment. So, too, can the gateway itself after it observes

significantly degraded Cloud status at a DC that serves an active session. In the case of an

empty solution space, the last good assignment S′ or fallback is used to ensure continuity.

Potentially–negative impacts of traffic steering and splitting on upstream will

manifest through changing Cloud status and will thus be resolved in subsequent optimiza-

tion runs. In the case of many distributed optimization–scheme instances, this can lead to

undesired upstream oscillations, which must be addressed (e.g., by regulating the extent

of assignment changes the optimization brings about – by using sufficiently large ratio

of history to the optimization frequency). These traffic swings, resulting from en–masse

deployment of the scheme, can also be resolved by regional or global external visibility

and control, such as SDN signaling. Care must also be taken when dealing with session

greediness or misleading 3rd–party information.

The limits of improvement, yielded by the optimization, depend on the accuracy

of predicting the Cloud status and the active smart–home session set. Additional engi-

neering enhancements to the scheme can further increase the yield, such as deferring new

Cloud sessions spawned near before optimization run or using high optimization frequency

to leverage fresher information.
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For a commoditized service with stateful Cloud sessions capable of being split or

steered, a service–state replication interval on the Cloud end has to be set such that an

application function is not disrupted by an adjusted assignment. Our optimization model

does not include Cloud computation and storage costs, but under the converged prices and

pay–as–you–go Cloud subscription, the bill should not change as the total service usage

remains the same.

To expedite optimal–assignment computations, the entire optimization calcula-

tion can be carried out elsewhere (e.g., Cloudlet or Fog) and resulting assignments delivered

back to the gateway. Or just the incremental changes in smart–home needs and Cloud

status can be used to calculate an incremental change to assignments (in lieu of the en-

tire program computation). Such a change–point detection better reflects the presumably

small need to adjust assignments following the initial, or sporadic, computation of the

entire MILP.

An entirely different implementation option, should limited forwarding resources

at the gateway become a concern, is a DNS–based implementation. In this case, optimal–

assignments are realized through IP addresses in DNS responses that the smart–home

gateway, as a local DNS resolver, serves to smart–home devices. These responses contain

the DNS TTL information, consistent with optimization–recalculation frequency, such

that devices periodically poll the gateway for new assignments. As DNS does not carry

any TCP/UDP port information, the optimization would need to take place at a service

level rather than session level. Also, triggered optimization would not be possible under

the DNS implementation. The main advantage of this implementation is that no per–

packet header rewriting of Cloud service addresses takes place, neither on the gateway nor

elsewhere. The End–to–end principle [110] is thus not violated.

6.4.5 Conclusion

In this Section, we have introduced the assignment–optimization scheme for

Cloud–bound smart–home traffic, which mitigates impact of DC outages and degradations,

reduces adverse network effects on smart–home devices and precalculates assignment for

future Cloud sessions.

Results of the verification and experimental evaluation using major CSPs show

that the optimization scheme could have averted between 60% and 100% packets from

problematic DCs. Also, the optimization’s potential to reduce adverse network effects is
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as much as 42%. The scheme is general enough and its applicability not limited to smart

homes and Clouds. Environments with heavy network traffic and diverse application mix

like campuses and small industries would perceive even greater improvements.

Smart–home users, Cloud tenants and CSPs would benefit from such a scheme.

Users would obtain better services through reduced adverse network effects and CSPs

would have traffic to their problematic DCs diverted naturally. Cloud tenants have long

lacked feedback from CSPs regarding causes of their user issues. CSPs, on the other hand,

focus on SLAs and not necessarily customer satisfaction. Our scheme globally and dis-

tributively logs Cloud status information at the network edge, allowing for accountability

and proper incentives for all stakeholders. In the future, signaling among all aforemen-

tioned stakeholders might even better reconcile interests and further improve services.

Variations of the presented optimization task can be introduced by consider-

ing different measures of Cloud status, minimizing the Cloud bill as Objective function,

tightly controlling the extent of changes for better stability, or approximating the optimal

solution from the LP corresponding to the relaxed NP–hard MILP. State–of–the–art

solutions report performance using diverse incompatible metrics (Table 3.1), a fair com-

parison across these is much needed. Another challenges include development of proper

Cloud–status prediction models, means of Cloud–status information sharing and instru-

mentation/provisioning of optimization scheme for large–scale deployments like Industry

4.0 or Smart cities.
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Conclusion

In this thesis, we have devised a methodology for network–based latency monitor-

ing of Cloud Computing services, as well as three monitoring–data–driven methodologies

for improving Cloud services. The data can serve various other purposes in performance

engineering, data mining, network design and other fields of research.

Despite the network latency’s importance for service performance and user expe-

rience, challenges such as latency unpredictability, uncontrollability and difficulties of mod-

eling persist. Unsuccessful attempts to capture Cloud latency analytically has motivated

us to devise the large–scale multiprotocol multitarget monitoring and employ mathematical

techniques for performance modeling and optimization. Our approach is cost effective, has

global reach, does not perturb the service and provides dependable measurements.

Using the created models, we have contributed to the following areas of Cloud

Computing performance research: (1) Cloud network profiling, (2) Cloud benchmarking

and (3) Cloud connectivity optimization. The results confirm the presence of many per-

formance suboptimalities of real services and address them by leveraging extra intelligence

applied on top of the multidimensional Cloud latency measurements.

7.1 Monitoring Methodology and Data Capture Platform

We have explored the state–of–the–art and design space of Cloud service moni-

toring techniques. We have described network latency, its Cloud traits and the problems

of its proper measurement and interpretation.

We have formalized the Cloud Computing system and presented the novel Multi-

dimensional Cloud latency monitoring methodology, based on active probing and record-
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ing batch–RTT timeseries of multiple protocol layers of multiple Cloud service provider

datacenter resources from multiple globally–dispersed redundant vantage points, both in-

ternal and external to the Cloud. As we have shown, this monitoring methodology pro-

vides increased measurement accuracy, confidence and additional insights compared to the

widespread one–dimensional monitoring techniques.

Using our data capture platform CLAudit, the large–scale monitoring run of

Amazon AWS and Microsoft Azure CSPs was conducted over five years.

7.2 Applications

We have conducted a detailed analysis of the measurements and identified notable

Cloud failures and anomalies. The likely causes of anomalous behavior have been deduced

using spatio–temporal coincidence and reasoning. We have also conducted the statistical

analysis and revealed adverse network effects such as tail latency, latency variability and

latency multimodality on the end–to–end Cloud paths. We have discerned the latency

improvements caused by CSP investments into evolving infrastructure.

We have proposed the longitudinal latency–based Cloud service benchmarking

methodology, capable of in–depth comparisons of Cloud Service Providers (CSPs), their

datacenters and Cloud resources therein, using diverse application requirements. Com-

parisons take place inside n–dimensional vector spaces that characterize performance of

services being compared. We designed a preprocessing method that transforms and nor-

malizes measurements in order to reduce clustering and comparison biases. We have con-

ducted a benchmarking case study of the real CSPs and revealed significant performance

differences at granularities of Cloud service providers, datacenters and resources.

We have proposed the methodology for optimizing Cloud connectivity across CSPs

using a gateway middleware. We have used Convex Optimization, namely binary Mixed–

Integer Linear Program (MILP), to continuously minimize the value of a metric approx-

imating cumulative adverse network effect on packets exchanged between client devices

and Cloud services, all by preserving cost, throughput and session requirements. We have

conducted a discrete–time simulation, using real CSP latency measurements. Results show

that Cloud traffic is naturally diverted from degraded datacenters and impact of outages

is mitigated. We have deduced the principal limits of the methodology and suggested its

näıve implementation inside an application plane of the conventional router architecture.
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7.3 Future Research Directions and Open Issues

Our monitoring architecture, data analyses, benchmarking and connectivity op-

timization scale well under the traditional Cloud Computing model. However, scalability

enhancements and additional instrumentation are likely needed to accommodate full needs

of the increasingly popular Edge/Fog Computing models with IoT–endpoint proliferation

of Smart Cities or Industry 4.0.

In this thesis, we have used a fixed measurement configuration, but an increased

measurement accuracy and reduced network loading can arise from employing distributed

collaborative measurement architecture, using agent–based vantage points strategically

issuing probes of different levels of informativeness, as was suggested in IBM’s active

probing scheme for problem determination in distributed systems [108].

We have considered only near–realtime measurements, but designing a way to sus-

tainably increase measurement frequency would enable realtime measurements that many

advanced applications would benefit from. Among these are Software Defined Network-

ing (SDN) feedback–based automated applications that would enable better high–level

control and preserve global network–stability objectives in face of local optimizations.

Other useful applications include determining realtime–workload split among providers

and dynamic auctioning of Cloud services. Fine–grained SLAs can use realtime meea-

suremens as compliance data, properly incentivizing CSPs, tenants and users to act in

their best interests and preserve the social welfare. Proper means of sharing such realtime

Cloud latency measurements, or Cloud status in general, also remain an open question.

An increased measurement volume and extra dimensionality would allow ad-

vanced data mining and machine learning applications for Cloud–status prediction, de-

tection of novel anomalous behaviors and classifying them as overload, security incident,

seasonal swing or normal behavior. Subsequently, the SDN controller would be able to

react and reconfigure the network elements to address the arisen situation accordingly.

The methodologies, presented in this thesis, can be extended by additional deci-

sion factors, e.g., financial costs, computation and storage performance, to enable multi-

variate optimization, benchmarking and insights. An importance of every factor remains

to be determined, based on various application needs.
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7.4 Impact on Industry and Academia

Our contributions both directly and indirectly lead to lower and predictable net-

work latency, allowing for low–latency technology (e.g., Reactive AI, community Geo–

spatial Cloud GIS). Even more challenging are sub–millisecond latencies for mission–

critical applications (e.g., telesurgery, intelligent transportation), where the network la-

tency has to be less or equal to the latency of body signals traversing neurological and

physical pathways in the body (e.g., from brain to the eyes or from skin to nerves in

the spinal column). Another uses for sub–millisecond latencies are financial trading and

smart–grid control, where even a slightest time loss has a non–negligible price tag attached.

At the heart of a large socio–economic FinTech movement (e.g., distributed

ledgers, cryptocurrencies, Blockchain, open banking APIs) is a distributed system needing

timeliness to ensure fidelity and small attack surface, fidelity. As such, it is crucial that

latencies remain low, predictable and auditable.

New large–scale infrastructures (e.g., DCs or Fog networks) can instantly ob-

tain complex observations and insights into their real–world behavior, as well as become

part of standard public Cloud benchmarks. Existing providers, tenants and users can

leverage this benchmark as a data service for strict compliance monitoring, which is ex-

tremely important for continuous adaptive risk and trust of cyber–physical systems in

industry automation, transportation and health technology. Home and other edge users

gain additional control over their traffic destinations and application requirements, which is

important given edge data volumes produced and diverse CX–oriented applications such

as immersive augmented/virtual reality, speech triggers, chatbots or virtual assistants.

Distributed logging and auditing capabilities further properly incentivize all stakeholders.

Arbitrary new and demanding Cloud applications (e.g., event–driven intelligent

things, virtual assistants or workplace collaboration) can now base their deployment and

migration decisions on in–depth benchmarking process that accurately reflects their la-

tency requirements and treats candidate Clouds fairly.

Industry and standard bodies keep releasing protocols that suit contemporary

communication network needs (e.g., CoAP and MQTT for IoT). Our work ensures that

any future protocol with request–response nature plugs easily into multidimensional mon-

itoring system and, thus has its behavior continuously recorded, compliance checked and

anomalous behaviors identified.
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Many conference and journal papers, already published at the time of writing,

build on top of or otherwise refer to our work. These papers can be summarized by several

main emerging and developing areas:

• Novel offload infrastructures and URLLC foundations (e.g., Hybrid Mobile Edge,

server–centric PON–based fog, Two–level MAC scheduling for 5G–slicing);

• Cloud–based low–latency applications (e.g., Computational Fluid Dynamics, Low–

latency video, hosting of demanding legacy applications);

• Network–based evaluations (e.g., ISM IoT mesh performance, IoT middleware per-

formance, Amazon; S3 storage performance, PON–based DC energy–performance

tradeoffs, VM migration latency–cost tradeoffs, network and storage latency attacks

on trading protocols,);

• Network–based tools (e.g., automated Cloud auditor, network throughput and stress

testing software, IoT framework, IoT simulator, performance simulation and security–

requirements verification platform);

• Cloud posture (e.g., trust evaluation framework with compliance monitoring, network

metric–based monitoring of complex applications, audit–based trust management

framework);

• Cloud network data mining (e.g., learning from multidimensional measurements, un-

supervised HCA of latency measurements, detection of spatio–temporal performance

variations and event coincidences);

• Modeling IoT devices and middleware (e.g., reference architecture, simulation envi-

ronment, security framework).

Our proposed CLAudit monitoring platform was mentioned in Devices & Net-

working Summit 2015 during Victor Bahl’s “Cloud 2020: The Emergence of Micro Data-

centers (Cloudlets) for Mobile Computing” keynote [43]. Also, several master and doctoral

theses build on our work.
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7.5 Research Contributions

Solutions and results covered in this thesis were published in several conference

and IF–journal papers. We still publicly offer archived measurements and encourage the

research community to use it for verification and further studies. The details of our original

research contributions and the relevant publication record are as follows:

Chapters 4: Monitoring Methodology and 5: Data Capture Platform

• A new methodology of Cloud latency monitoring has been presented. The method

is based on continuous large–scale active probing of multiple Cloud resources at

multiple network protocol layers from a global network of Internet vantage points.

It is lightweight, easy–to–deploy, dependable and stores little information.

• A method for multidimensional measurements capture has been devised and imple-

mented using PlanetLab and basic–tier public Cloud provider resources.

• Cloud Latency Auditing Platform (CLAudit) platform source codebase was devel-

oped and packaged into readily–deployable monitoring solution.

• Actual real–world measurements were continuously collected using Cloud monitoring

platform, visualized in a near–realtime, archived online and provided in a form of a

published open datasets.

Works related to these results are:

• O. Tomanek, P. Mulinka and L. Kencl, “Multidimensional Cloud Latency Monitoring

and Evaluation”, Computer Networks, vol. 107, Elsevier, 2016, pp. 104–120.

• O. Tomanek and L. Kencl, “CLAudit: Planetary–scale Cloud Latency Auditing

Platform”, in Proceedings of the 2nd International Conference on Cloud Networking

(CloudNet). IEEE, 2013, pp. 138–146.
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Chapter 6: Applications

• A mutidimensional–measurement timeseries analyses and network profiling metrics

have been presented, together with revealed insights and anomalous behaviors of

Cloud services.

• A new longitudinal methodology for Cloud service benchmarking has been presented

that accurately reflects application requirements by leveraging preprocessed multi-

dimensional measurements.

• A new MILP–based methodology for Cloud connectivity optimization has been pre-

sented that minimizes cumulative adverse network effects on Cloud–bound traffic

and avoids degraded destinations by using informed–gateway decisions.

• Large–scale evaluation of Cloud service latency of two major Cloud service providers,

Microsoft Azure and Amazon AWS datacenters, has been carried out through appli-

cation case studies. The results revealed notable otherwise–hidden trends, events,

infrastructure changes and performance differences at granularities of Cloud service

providers, datacenters and resources.

Works related to these results are:

• O. Tomanek and L. Kencl, “Optimization of Cloud Connectivity using Smart–home

Gateway”, in Proceedings of the 2018 IEEE International Conference on Communi-

cations (ICC). IEEE, 2018, pp. 1–7.

• V. Uhlir, O. Tomanek and L. Kencl, “Latency–based Benchmarking of Cloud Service

Providers”, in Proceedings of the 9th International Conference on Utility and Cloud

Computing (UCC). ACM, 2016, pp. 263–268.

• O. Tomanek, P. Mulinka and L. Kencl, “Multidimensional Cloud Latency Monitoring

and Evaluation”, Computer Networks, vol. 107, Elsevier, 2016, pp. 104–120.
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